【題目】a,b,c是有理數(shù),|a|=4,|b|=9,|c|=6,且ab<0,bc>0,求ab﹣(﹣c)的值.

【答案】﹣7.

【解析】

根據(jù)絕對值的性質(zhì)得到a=±4,b=±9,c=±6,a=4a=﹣4兩種情況,根據(jù)有理數(shù)的乘法法則,減法法則計算

|a|=4,|b|=9,|c|=6,∴a=±4,b=±9,c=±6.

ab0bc0,∴分兩種情況討論:

a=4,b=﹣9,c=﹣6,ab﹣(﹣c)=4﹣(﹣9)+(﹣6)=7;

a=﹣4,b=9,c=6,ab﹣(﹣c)=﹣4﹣9+6=﹣7.

綜上所述ab﹣(﹣c)的值為±7

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的運算程序中,若開始輸入的x值為12,我們發(fā)現(xiàn)第1次輸出的結(jié)果為6,第2次輸出的結(jié)果為3,…第2017次輸出的結(jié)果為(

A.3
B.6
C.4
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列各式:
13+23= ×4×9= ×22×32
13+23+33=36= ×9×16= ×32×42
13+23+33+43=100= ×16×25= ×42×52
(1)計算:13+23+33+43+…+103的值;
(2)猜想:13+23+33+43+…+n3的值.
(3)計算:513+523+533+…+993+1003的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個三角形的三邊a,b,c能滿足a2+b2=nc2(n為正整數(shù)),那么這個三角形叫做n階三角形.如三邊分別為1、2、的三角形滿足12+22=1×2,所以它是1階三角形,但同時也滿足(2+22=9×12,所以它也是9階三角形.顯然,等邊三角形是2階三角形,但2階三角形不一定是等邊三角形.

(1)在我們熟知的三角形中,何種三角形一定是3階三角形?

(2)若三邊分別是a,b,c(a<b<c)的直角三角形是一個2階三角形,求a:b:c.

(3)如圖1,直角ABC是2階三角形,AC<BC<AB,三條中線BD、AE、CF所構(gòu)成的三角形是何種三角形?四位同學作了猜想:

A同學:是2階三角形但不是直角三角形;

B同學:是直角三角形但不是2階三角形;

C同學:既是2階三角形又是直角三角形;

D同學:既不是2階三角形也不是直角三角形.

請你判斷哪位同學猜想正確,并證明你的判斷.

(4)如圖2,矩形OACB中,O為坐標原點,A在y軸上,B在x軸上,C點坐標是(2,1),反比例函數(shù)y=(k>0)的圖象與直線AC、直線BC交于點E、D,若ODE是5階三角形,直接寫出所有可能的k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大型水果超市銷售無錫水蜜桃,根據(jù)前段時間的銷售經(jīng)驗,每天的售價x(元/箱)與銷售量y(箱)有如表關系:

每箱售價x(元)

68

67

66

65

40

每天銷量y(箱)

40

45

50

55

180

已知y與x之間的函數(shù)關系是一次函數(shù).

(1)求y與x的函數(shù)解析式;

(2)水蜜桃的進價是40元/箱,若該超市每天銷售水蜜桃盈利1600元,要使顧客獲得實惠,每箱售價是多少元?

(3)七月份連續(xù)陰雨,銷售量減少,超市決定采取降價銷售,所以從7月17號開始水蜜桃銷售價格在(2)的條件下,下降了m%,同時水蜜桃的進貨成本下降了10%,銷售量也因此比原來每天獲得1600元盈利時上漲了2m%(m<100),7月份(按31天計算)降價銷售后的水蜜桃銷售總盈利比7月份降價銷售前的銷售總盈利少7120元,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某食品廠向A市銷售面包,如果從鐵路托運,每千克需運費0.8元;如果從公路托運,每千克需運費0.5元,另需包裝費 600元。

1)設該市向A市銷售面包千克,鐵路運費元,公路運費元,則之間的函數(shù)關系式分別為_______,_________

2)若廠家只出運費1500元,選用______ 運送,運送面包多;

3)若廠家運送3000千克,選用______運送,所需運費少。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點A、B分別在數(shù)軸原點O的左右兩側(cè),且 OA+50=OB,點B對應數(shù)是90.

(1)求A點對應的數(shù);
(2)如圖2,動點M、N、P分別從原點O、A、B同時出發(fā),其中M、N均向右運動,速度分別為2個單位長度/秒,7個單位長度/秒,點P向左運動,速度為8個單位長度/秒,設它們運動時間為t秒,問當t為何值時,點M、N之間的距離等于P、M之間的距離;

(3)如圖3,將(2)中的三動點M、N、P的運動方向改為與原來相反的方向,其余條件不變,設Q為線段MN的中點,R為線段OP的中點,求22RQ﹣28RO﹣5PN的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)前往B城,在整個行駛過程中,汽車離開A城的距離y(km)與行駛時間t(h)的函數(shù)圖象如圖所示,下列說法正確的有(

①甲車的速度為50km/h

②乙車用了3h到達B城

③甲車出發(fā)4h時,乙車追上甲車

④乙車出發(fā)后經(jīng)過1h或3h兩車相距50km.

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一游客在某城市旅游期間,沿街步行前往著名的電視塔觀光,他在A處望塔頂C的仰角為30°,繼續(xù)前行250m后到達B處,此時望塔頂?shù)难鼋菫?5°.已知這位游客的眼睛到地面的距離約為170cm,假若游客所走路線直達電視塔底.請你計算這座電視塔大約有多高?(結(jié)果保留整數(shù). 1.7,1.4;E,F(xiàn)分別是兩次測量時游客眼睛所在的位置.)

查看答案和解析>>

同步練習冊答案