(2007•佳木斯)如圖,已知?ABCD中,∠BDE=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延長線相交于G,下面結(jié)論:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正確的結(jié)論是( )

A.①②③④
B.①②③
C.①②④
D.②③④
【答案】分析:根據(jù)已知及相似三角形的判定方法對各個結(jié)論進行分析從而得到最后答案.
解答:解:∵∠BDE=45°,DE⊥BC
∴DB=BE,BE=DE
∵DE⊥BC,BF⊥CD
∴∠BEH=∠DEC=90°
∵∠BHE=∠DHF
∴∠EBH=∠CDE
∴△BEH≌△DEC
∴∠BHE=∠C,BH=CD
∵?ABCD中
∴∠C=∠A,AB=CD
∴∠A=∠BHE,AB=BH
∴正確的有①②③
故選B.
點評:此題考查了相似三角形的判定和性質(zhì):①如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應(yīng)邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應(yīng)角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.相似三角形的對應(yīng)邊成比例,對應(yīng)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2007•佳木斯)如圖,在平面直角坐標系中,已知點A(-3,6),點B,點C分別在x軸的負半軸和正半軸上,OB,OC的長分別是方程x2-4x+3=0的兩根(OB<OC).
(1)求點B,點C的坐標;
(2)若平面內(nèi)有M(1,-2),D為線段OC上一點,且滿足∠DMC=∠BAC,求直線MD的解析式;
(3)在坐標平面內(nèi)是否存在點Q和點P(點P在直線AC上),使以O(shè),P,C,Q為頂點的四邊形是正方形?若存在,請直接寫出Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年黑龍江省佳木斯市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•佳木斯)如圖,在平面直角坐標系中,已知點A(-3,6),點B,點C分別在x軸的負半軸和正半軸上,OB,OC的長分別是方程x2-4x+3=0的兩根(OB<OC).
(1)求點B,點C的坐標;
(2)若平面內(nèi)有M(1,-2),D為線段OC上一點,且滿足∠DMC=∠BAC,求直線MD的解析式;
(3)在坐標平面內(nèi)是否存在點Q和點P(點P在直線AC上),使以O(shè),P,C,Q為頂點的四邊形是正方形?若存在,請直接寫出Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(03)(解析版) 題型:填空題

(2007•佳木斯)在Rt△ABC中,∠C=90°,sinB=,則=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:填空題

(2007•佳木斯)數(shù)學(xué)興趣小組想測量一棵樹的高度,在陽光下,一名同學(xué)測得一根長為1米的竹竿的影長為0.8米.同時另一名同學(xué)測量一棵樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖),其影長為1.2米,落在地面上的影長為2.4米,則樹高為    米.

查看答案和解析>>

同步練習(xí)冊答案