如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于D,過點(diǎn)D作DE⊥AD交AB于E,以AE為直徑作⊙O.
(1)求證:點(diǎn)D在⊙O上;
(2)求證:BC是⊙O的切線;
(3)若AC=6,BC=8,求△BDE的面積.
【答案】分析:(1)連接OD,由DO為直角三角形斜邊上的中線,得到OD=OA=OE,可得出點(diǎn)D在圓O上;
(2)由AD為角平分線,得到一對(duì)角相等,再由OD=OA,利用等邊對(duì)等角得到一對(duì)角相等,等量代換得到一對(duì)內(nèi)錯(cuò)角相等,利用內(nèi)錯(cuò)角相等兩直線平行得到OD與AC平行,根據(jù)兩直線平行同位角相等即可得到∠ODB為直角,即BC與OD垂直,即可確定出BC為圓O的切線;
(3)過E作EH垂直于BC,由OD與AC平行,得到△ACB與△ODB相似,設(shè)OD=OA=OE=x,表示出OB,由相似得比例列出關(guān)于x的方程,求出方程的解得到x的值,確定出OD與BE的長,進(jìn)而確定出BD的長,再由△BEH與△ODB相似,由相似得比例求出EH的長,△BED以BD為底,EH為高,求出面積即可.
解答:(1)證明:連接OD,
∵△ADE是直角三角形,OA=OE,
∴OD=OA=OE,
∴點(diǎn)D在⊙O上;

(2)證明:∵AD是∠BAC的角平分線,
∴∠CAD=∠DAB,
∵OD=OA,
∴∠OAD=∠ODA,
∴∠CAD=∠ODA,
∴AC∥OD,
∴∠C=∠ODB=90°,
∴BC是⊙O的切線;

(3)解:在Rt△ACB中,AC=6,BC=8,
∴根據(jù)勾股定理得:AB=10,
設(shè)OD=OA=OE=x,則OB=10-x,
∵AC∥OD,△ACB∽△ODB,
==,即=,
解得:x=,
∴OD=,BE=10-2x=10-=,
=,即=,
∴BD=5,
過E作EH⊥BD,
∵EH∥OD,
∴△BEH∽△BOD,
=,即=,
∴EH=
∴S△BDE=BD•EH=
點(diǎn)評(píng):此題考查了切線的判定,相似三角形的判定與性質(zhì),勾股定理,平行線的判定與性質(zhì),熟練掌握切線的判定方法是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案