【題目】如圖,等邊△ABC的邊長是2,D,E分別是AB,AC的中點(diǎn),延長BC至點(diǎn)F,使CF=BC,連接CD,EF
(1)求證:CD=EF;
(2)求EF的長.
【答案】(1)見解析;(2)EF=.
【解析】
(1)直接利用三角形中位線定理得出DE∥BC,DE=BC,進(jìn)而得出DE=FC,得出四邊形CDEF是平行四邊形,即可得出CD=EF;
(2)利用平行四邊形的判定與性質(zhì)得出DC=EF,進(jìn)而利用等邊三角形的性質(zhì)以及勾股定理得出EF的長即可得答案.
(1)∵D、E分別為AB、AC的中點(diǎn),
∴DE為△ABC的中位線,
∴DE∥BC,DE=BC,
∵使CF=BC,
∴DE=FC,
∴四邊形CDEF是平行四邊形,
∴CD=EF.
(2)∵四邊形DEFC是平行四邊形,
∴CD=EF,
∵D為AB的中點(diǎn),等邊△ABC的邊長是2,
∴AD=BD=1,CD⊥AB,BC=2,
∴EF=CD==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1和2,在20×20的等距網(wǎng)格(每格的寬和高均是1個(gè)單位長)中,Rt△ABC從點(diǎn)A與點(diǎn)M重合的位置開始,以每秒1個(gè)單位長的速度先向下平移,當(dāng)BC邊與網(wǎng)的底部重合時(shí),繼續(xù)同樣的速度向右平移,當(dāng)點(diǎn)C與點(diǎn)P重合時(shí),Rt△ABC停止移動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△QAC的面積為y.
(1)如圖1,當(dāng)Rt△ABC向下平移到Rt△A1B1C1的位置時(shí),請(qǐng)你在網(wǎng)格中畫出Rt△A1B1C1關(guān)于直線QN成軸對(duì)稱的圖形;
(2)如圖2,在Rt△ABC向下平移的過程中,請(qǐng)你求出y與x的函數(shù)關(guān)系式,并說明當(dāng)x分別取何值時(shí),y取得最大值和最小值?最大值和最小值分別是多少?
(3)在Rt△ABC向右平移的過程中,請(qǐng)你說明當(dāng)x取何值時(shí),y取得最大值和最小值?最大值和最值分別是多少?為什么?(說明:在(3)中,將視你解答方法的創(chuàng)新程度,給予1~4分的加分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)A旋轉(zhuǎn)至△ADE的位置,使點(diǎn)E落在BC邊上,則對(duì)于結(jié)論:①DE=BC;②∠EAC=∠DAB;③EA平分∠DEC;④若DE∥AC,則∠DEB=60°;其中正確結(jié)論的個(gè)數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了矩形這節(jié)內(nèi)容之后,明明同學(xué)發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4 的打印紙等,這些矩形的長與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD 中,點(diǎn) P 為 AB 邊上的定點(diǎn),且 AP=AD.
(1)求證:PD=AB.
(2)如圖(2),若在“完美矩形“ABCD 的邊 BC 上有一動(dòng)點(diǎn) E,當(dāng)的值是多少時(shí),△PDE 的周長最?
(3)如圖(3),點(diǎn) Q 是邊 AB 上的定點(diǎn),且 BQ=BC.已知 AD=1,在(2)的條件下連接 DE 并延長交 AB 的延長線于點(diǎn) F,連接 CF,G 為 CF 的中點(diǎn),M、N 分別為線段 QF 和 CD 上的動(dòng)點(diǎn),且始終保持 QM=CN,MN 與 DF 相交于點(diǎn) H,請(qǐng)問 GH 的長度是定值嗎?若是,請(qǐng)求出它的值,若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠制作AB兩種型號(hào)的環(huán)保包裝盒.已知用3米同樣的材料分別制成A型盒的個(gè)數(shù)比制成B型盒的個(gè)數(shù)少1個(gè),且制作一個(gè)A型盒比制作一個(gè)B型盒要多用20%的材料.求制作每個(gè)A,B型盒各用多少材料?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過點(diǎn)E作EF⊥DE,交BC的延長線于點(diǎn)F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】成都市空氣質(zhì)量整治領(lǐng)導(dǎo)小組近期提出“保護(hù)好環(huán)境,拒絕冒黑煙”.某公交公司將淘汰某一條線路上“冒黑煙”較嚴(yán)重的公交車,計(jì)劃購買型和型兩種環(huán)保節(jié)能的公交車10輛.若購買型公交車1輛,型公交車2輛,共需400萬元;若購買型公交車2輛,型公交車1輛,共需350萬元.
(1)求購買型和型公交車每輛各需多少萬元?
(2)預(yù)計(jì)在該線路上型和型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買型和型公交車的總費(fèi)用不超過1200萬元,且確保這10輛公交車在該線路的年均載客和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案總費(fèi)用最少?最少費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關(guān)系,其部分圖象如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式;(不需要寫定義域)
(2)已知當(dāng)油箱中的剩余油量為8升時(shí),該汽車會(huì)開始提示加油,在此次行駛過程中,行駛了500千米時(shí),司機(jī)發(fā)現(xiàn)離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時(shí)離加油站的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知,,,是線段上的一個(gè)動(dòng)點(diǎn),作直線,過點(diǎn)作交軸于點(diǎn),若,設(shè)點(diǎn)、在直線上,則為( )
A.2B.C.3D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com