【題目】如圖,在ABC中,ABBC,∠ABC90°,點(diǎn)EBC上,點(diǎn)FAB的延長(zhǎng)線上,且AECF

1)求證:ABE≌△CBF

2)若∠ACF70°,求∠EAC的度數(shù).

【答案】1)見解析;(2)∠EAC20°

【解析】

1)由ABCB,∠ABC90°,AECF,即可利用HL證得RtABERtCBF

2)由ABCB,∠ABC90°,即可求得∠CAB與∠ACB的度數(shù),即可得∠FBC的度數(shù),又由RtABERtCBF,即可求得∠EAB的度數(shù),再得出∠EAC即可求得答案.

證明:∵∠ABC90°

∴△ABECBF為直角三角形.

∵在RtABERtBCF中,

,

RtABERtCBF;

2)∵ABBC,∠ABC90°,

∴∠BAC=∠ACB45°,

∵∠ACF70°,

∴∠FBC25°,

RtABERtCBF,∴∠EAB=∠FBC25°,

∴∠EAC20°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在坐標(biāo)平面內(nèi),點(diǎn)的坐標(biāo)是,點(diǎn)在點(diǎn)的正北方向個(gè)單位處,把點(diǎn)向上平移個(gè)單位再向左平移個(gè)單位得到點(diǎn)

在下圖中畫出平面直角坐標(biāo)系和,寫出點(diǎn)、點(diǎn)的坐標(biāo);

在圖中作出關(guān)于軸的軸對(duì)稱圖形

求出的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,觀察每個(gè)正多邊形中的變化情況,解答下列問題:

1)將下面的表格補(bǔ)充完整:

正多邊形的邊數(shù)

3

4

5

6

15

的度數(shù)

2)根據(jù)規(guī)律,是否存在一個(gè)正邊形,使其中?若存在,直接寫出的值;若不存在,請(qǐng)說明理由;

3)根據(jù)規(guī)律,是否存在一個(gè)正邊形,使其中?若存在,直接寫出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx+c的圖象如圖所示.

(1)求二次函數(shù)的表達(dá)式;

(2)函數(shù)圖象上有兩點(diǎn)P(x1,y),Q(x2,y),且滿足x1<x2,結(jié)合函數(shù)圖象回答問題;

①當(dāng)y=3時(shí),直接寫出x2﹣x1的值;

②當(dāng)2≤x2﹣x1≤3,求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城.在整個(gè)行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論:①A,B兩城相距300千米;②乙車比甲車晚出發(fā)1小時(shí),卻早到1.5小時(shí);③乙車出發(fā)后2.5小時(shí)追上甲車;④當(dāng)甲、乙兩車相距40千米時(shí),tt,其中正確的結(jié)論有( 。

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系內(nèi)的點(diǎn)Am32m2)在第二象限,且m為整數(shù),B3,1).

1)求點(diǎn)A的坐標(biāo);

2)點(diǎn)Px軸上一動(dòng)點(diǎn),當(dāng)PA+PB最小時(shí),求:①點(diǎn)P的坐標(biāo);②PA+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,RtABC中,∠C=90°,AC=4,BC=3.以AC上一點(diǎn)O為圓心的⊙OBC相切于點(diǎn)C,與AC相交于點(diǎn)D.

(1)如圖1,若⊙OAB相切于點(diǎn)E,求⊙O的半徑;

(2)如圖2,若⊙OAB邊上截得的弦FG= , 求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,過對(duì)角線BD上一點(diǎn)PEFBCGHAB,則圖中面積相等的平行四邊形共有_____對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)D,E是位于AB兩側(cè)的半圓AB上的動(dòng)點(diǎn),射線DC切⊙O于點(diǎn)D.連接DE,AEDEAB交于點(diǎn)P,F是射線DC上一動(dòng)點(diǎn),連接FP,FB,且∠AED45°

1)求證:CDAB;

2)填空:

①若DFAP,當(dāng)∠DAE_________時(shí),四邊形ADFP是菱形;

②若BFDF,當(dāng)∠DAE_________時(shí),四邊形BFDP是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案