【題目】如圖,在RtABC中,∠C90°,AC3,BC4,點(diǎn)DAB的中點(diǎn),點(diǎn)P是直線BC上一點(diǎn),將△BDP沿DP所在的直線翻折后,點(diǎn)B落在B1處,若B1DBC,則點(diǎn)P與點(diǎn)B之間的距離為( 。

A.1B.C.1 3D.5

【答案】D

【解析】

分點(diǎn)B1BC左側(cè),點(diǎn)B1BC右側(cè)兩種情況討論,由勾股定理可AB=5,由平行線分線段成比例可得,可求BE,DE的長(zhǎng),由勾股定理可求PB的長(zhǎng).

解:如圖,若點(diǎn)B1BC左側(cè),

∵∠C=90°,AC=3,BC=4,

AB=

∵點(diǎn)DAB的中點(diǎn),

BD=BA=

B1DBC,∠C=90°

B1DAC

BE=EC=BC=2DE=AC=

∵折疊

B1D=BD=,B1P=BP

B1E=B1D-DE=1

∴在RtB1PE中,B1P2=B1E2+PE2

BP2=1+2-BP2,

BP=

如圖,若點(diǎn)B1BC右側(cè),

B1E=DE+B1D=+,

B1E=4

RtEB1P中,B1P2=B1E2+EP2,

BP2=16+BP-22,

BP=5

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線過點(diǎn),且與直線交于B、C兩點(diǎn),點(diǎn)B的坐標(biāo)為

1)求拋物線的解析式;

2)點(diǎn)D為拋物線上位于直線上方的一點(diǎn),過點(diǎn)D軸交直線于點(diǎn)E,點(diǎn)P為對(duì)稱軸上一動(dòng)點(diǎn),當(dāng)線段的長(zhǎng)度最大時(shí),求的最小值;

3)設(shè)點(diǎn)M為拋物線的頂點(diǎn),在y軸上是否存在點(diǎn)Q,使?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線

若該拋物線經(jīng)過點(diǎn),試求的值及拋物線的頂點(diǎn)坐標(biāo).

求此拋物線的頂點(diǎn)坐標(biāo)(用含的代數(shù)式表示) ,并證明:不論為何值,該拋物線的頂點(diǎn)都在同一條直線上.

直線截拋物線所得的線段長(zhǎng)是否為定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1,點(diǎn)B(﹣9,10,AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).

(1求拋物線的解析式;(2過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國(guó)際油價(jià)隨著供需關(guān)系持續(xù)波動(dòng),特別是主要產(chǎn)油國(guó)的日產(chǎn)量會(huì)影響油價(jià)的走勢(shì),某段時(shí)間,某石油輸出大國(guó)每天石油的日產(chǎn)量約為1200萬桶時(shí),石油的國(guó)際油價(jià)是每桶56美元,每桶成本約為40美元.據(jù)統(tǒng)計(jì),當(dāng)日產(chǎn)量減少50萬桶時(shí),每桶國(guó)際油價(jià)將會(huì)提高7美元,但當(dāng)每桶價(jià)格高于100美元時(shí),石油需求量又會(huì)大幅減少,從而嚴(yán)重影響該國(guó)的國(guó)家經(jīng)濟(jì).

1)若某段時(shí)間國(guó)際石油的價(jià)格是77美元/桶,則該國(guó)當(dāng)日的石油日產(chǎn)量是多少萬桶?

2)該國(guó)為了實(shí)現(xiàn)一天的利潤(rùn)為3.3億美元.則日產(chǎn)量是多少萬桶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的點(diǎn)A,C在⊙O上,⊙OAB相交于點(diǎn)D,連接CD,∠A30°,DC

1)求圓心O到弦DC的距離;

2)若∠ACB+ADC180°,求證:BC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖像交于,與軸、軸相交于、兩點(diǎn),過點(diǎn)、軸、軸平行線交于點(diǎn),若,則__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD中,點(diǎn)EBC的中點(diǎn),過點(diǎn)BBGAE于點(diǎn)G,過點(diǎn)CCF垂直BG的延長(zhǎng)線于點(diǎn)H,交AD于點(diǎn)F

(1)求證:△ABG≌△BCH

(2)如圖2,連接AH,連接EH并延長(zhǎng)交CD于點(diǎn)I;

求證:① AB2=AE·BH;② 的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知以RtABC的邊AB為直徑作ABC的外接圓⊙O,B的平分線BEACD,交⊙OE,過EEFACBA的延長(zhǎng)線于F.

(1)求證:EF是⊙O切線;

(2)若AB=15,EF=10,求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案