如圖,二次函數(shù)的圖象與x軸交于點(diǎn)A(﹣3,0)和點(diǎn)B,以AB為邊在x軸上方作正方形ABCD,點(diǎn)P是x軸上一動點(diǎn),連接DP,過點(diǎn)P作DP的垂線與y軸交于點(diǎn)E.

(1)請直接寫出點(diǎn)D的坐標(biāo):     ;
(2)當(dāng)點(diǎn)P在線段AO(點(diǎn)P不與A、O重合)上運(yùn)動至何處時,線段OE的長有最大值,求出這個最大值;
(3)是否存在這樣的點(diǎn)P,使△PED是等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo)及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.

解:(1)(﹣3,4)。
(2)設(shè)PA=t,OE=m,
由∠DAP=∠POE=∠DPE=90°得△DAP∽△POE,
。
。
∴當(dāng)t=時,m有最大值,即P為AO中點(diǎn)時,OE的最大值為。
(3)存在。

①點(diǎn)P在y軸左側(cè)時,P點(diǎn)的坐標(biāo)為(﹣4,0)。
由△PAD∽△OEG得OE=PA=1!郞P=OA+PA=4。
∵△ADG∽△OEG,∴AG:GO=AD:OE=4:1。
。
∴重疊部分的面積=SPAG
②當(dāng)P點(diǎn)在y軸右側(cè)時,P點(diǎn)的坐標(biāo)為(4,0),
仿①步驟,此時重疊部分的面積為。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

某工廠生產(chǎn)某品牌的護(hù)眼燈,并將護(hù)眼燈按質(zhì)量分成15個等級(等級越高,質(zhì)量越好.如:二級產(chǎn)品好于一級產(chǎn)品).若出售這批護(hù)眼燈,一級產(chǎn)品每臺可獲利21元,每提高一個等級每臺可多獲利潤1元,工廠每天只能生產(chǎn)同一個等級的護(hù)眼燈,每個等級每天生產(chǎn)的臺數(shù)如下表表示:

等級(x級)
一級
二級
三級

生產(chǎn)量(y臺/天)
78
76
74

(1)已知護(hù)眼燈每天的生產(chǎn)量y(臺)是等級x(級)的一次函數(shù),請直接寫出之間的函數(shù)關(guān)系式:_____;
(2)每臺護(hù)眼燈可獲利z(元)關(guān)于等級x(級)的函數(shù)關(guān)系式:______;
(3)若工廠將當(dāng)日所生產(chǎn)的護(hù)眼燈全部售出,工廠應(yīng)生產(chǎn)哪一等級的護(hù)眼燈,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,∠C=90°,BC=3,AB=5.點(diǎn)P從點(diǎn)B出發(fā),以每秒1個單位長度沿B→C→A→B的方向運(yùn)動;點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個單位沿C→A→B方向的運(yùn)動,到達(dá)點(diǎn)B后立即原速返回,若P、Q兩點(diǎn)同時運(yùn)動,相遇后同時停止,設(shè)運(yùn)動時間為t秒.

(1)當(dāng)t=     時,點(diǎn)P與點(diǎn)Q相遇;
(2)在點(diǎn)P從點(diǎn)B到點(diǎn)C的運(yùn)動過程中,當(dāng)ι為何值時,△PCQ為等腰三角形?
(3)在點(diǎn)Q從點(diǎn)B返回點(diǎn)A的運(yùn)動過程中,設(shè)△PCQ的面積為s平方單位.
①求s與ι之間的函數(shù)關(guān)系式;
②當(dāng)s最大時,過點(diǎn)P作直線交AB于點(diǎn)D,將△ABC中沿直線PD折疊,使點(diǎn)A落在直線PC上,求折疊后的
△APD與△PCQ重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線拋物線(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點(diǎn)為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時,第1條拋物線與x軸的交點(diǎn)為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點(diǎn)坐標(biāo)為(       ,       );
依此類推第n條拋物線yn的頂點(diǎn)坐標(biāo)為(              );
所有拋物線的頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系是       ;
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得得線段長,直接寫出A0A1的值,并求出An-1An
②是否存在經(jīng)過點(diǎn)A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長度都相等?若存在,直接寫出直線的表達(dá)式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,拋物線的對稱軸與x軸相交于點(diǎn)M.P是拋物線在x軸上方的一個動點(diǎn)(點(diǎn)P、M、C不在同一條直線上).分別過點(diǎn)A、B作直線CP的垂線,垂足分別為D、E,連接點(diǎn)MD、ME.

(1)求點(diǎn)A,B的坐標(biāo)(直接寫出結(jié)果),并證明△MDE是等腰三角形;
(2)△MDE能否為等腰直角三角形?若能,求此時點(diǎn)P的坐標(biāo);若不能,說明理由;
(3)若將“P是拋物線在x軸上方的一個動點(diǎn)(點(diǎn)P、M、C不在同一條直線上)”改為“P是拋物線在x軸下方的一個動點(diǎn)”,其他條件不變,△MDE能否為等腰直角三角形?若能,求此時點(diǎn)P的坐標(biāo)(直接寫出結(jié)果);若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線的頂點(diǎn)為A,與y軸的交點(diǎn)為B,連結(jié)AB,AC⊥AB,交y軸于點(diǎn)C,延長CA到點(diǎn)D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.

(1)當(dāng)m=2時,求點(diǎn)B的坐標(biāo);
(2)求DE的長?
(3)①設(shè)點(diǎn)D的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式?②過點(diǎn)D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個交點(diǎn)為P,當(dāng)m為何值時,以,A,B,D,P為頂點(diǎn)的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線y=ax2+bx﹣4經(jīng)過A(﹣8,0),B(2,0)兩點(diǎn),直線x=﹣4交x軸于點(diǎn)C,交拋物線于點(diǎn)D.

(1)求該拋物線的解析式;
(2)點(diǎn)P在拋物線上,點(diǎn)E在直線x=﹣4上,若以A,O,E,P為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo);
(3)若B,D,C三點(diǎn)到同一條直線的距離分別是d1,d2,d3,問是否存在直線l,使?若存在,請直接寫出d3的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,),且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).

(1)求拋物線的解析式及A,B兩點(diǎn)的坐標(biāo);
(2)在(1)中拋物線的對稱軸l上是否存在一點(diǎn)P,使AP+CP的值最?若存在,求AP+CP的最小值,若不存在,請說明理由;
(3)在以AB為直徑的⊙M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=x2+bx+c過點(diǎn)A(﹣4,﹣3),與y軸交于點(diǎn)B,對稱軸是x=﹣3,請解答下列問題:

(1)求拋物線的解析式.
(2)若和x軸平行的直線與拋物線交于C,D兩點(diǎn),點(diǎn)C在對稱軸左側(cè),且CD=8,求△BCD的面積.
注:拋物線y=ax2+bx+c(a≠0)的對稱軸是

查看答案和解析>>

同步練習(xí)冊答案