【題目】如圖所示,在中,以為圓心,長(zhǎng)為半徑畫(huà)弧交于點(diǎn),再分別以點(diǎn)為圓心,大于為半徑畫(huà)弧,兩弧交于一點(diǎn),連結(jié)于點(diǎn),連結(jié).若,,則四邊形的面積為____

【答案】24

【解析】

由題意,先證明,結(jié)合平行四邊形的性質(zhì)得到AB=BE,進(jìn)一步得到AF=BE,從而證明平行四邊形ABEF是菱形,由菱形的性質(zhì)及勾股定理求出AE,利用菱形的面積公式即可解答.

解:連接

由圖可得,

中,

∵四邊形ABCD是平行四邊形,

ADBC

∴∠DAE=∠AEB,

∴∠BAE=∠AEB,

AB=BE,

又∵AFBE,

∴四邊形ABEF是平行四邊形,

AB=BE,

∴平行四邊形ABEF是菱形,

AEBF互相垂直平分,

∴∠AOB=90°,

AB=5,

中,

故答案為:24

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,點(diǎn)EBC上的一個(gè)動(dòng)點(diǎn),連接DE,交AC于點(diǎn)F

1)如圖①,當(dāng)時(shí),求的值;

2)如圖②,當(dāng)點(diǎn)EBC的中點(diǎn)時(shí),過(guò)點(diǎn)FFGBC于點(diǎn)G,求證:CG=BG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在RtOAB,OAB=90°,BOA=30°,AB=2.若以O為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi),將RtOAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.

1)求點(diǎn)C的坐標(biāo);

2)若拋物線y=ax2+bxa≠0)經(jīng)過(guò)C、A兩點(diǎn),求此拋物線的解析式;

3)若拋物線的對(duì)稱軸與OB交于點(diǎn)D,點(diǎn)P為線段DB上一點(diǎn),過(guò)Py軸的平行線,交拋物線于點(diǎn)M.問(wèn):是否存在這樣的點(diǎn)P,使得四邊形CDPM為等腰梯形,若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)A,B,C都在⊙O上,連接AB,AC,點(diǎn)D,E分別在ACAB上,連接CE并延長(zhǎng)交⊙O于點(diǎn)F,連接BD,BF,∠BDC﹣∠BFC2ABF

1)如圖1,求證:∠ABD2ACF;

2)如圖2,CEBD于點(diǎn)G,過(guò)點(diǎn)GGMAC于點(diǎn)M,若AMMD,求證:AEGD;

3)如圖3,在(2)的條件下,當(dāng)AEBE87時(shí),連接DE,且∠ADE30°.延長(zhǎng)BD交⊙O于點(diǎn)H,連接AH,AH8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)課上,老師對(duì)大學(xué)說(shuō):你任意想一個(gè)非零實(shí)數(shù),然后按下列步驟操作,我會(huì)直接說(shuō)出你運(yùn)算的最后結(jié)果

操作步驟如下:

第一步:計(jì)算這個(gè)數(shù)與1的和的平方,減去這個(gè)數(shù)與1的差的平方

第二步:把第一步得到的數(shù)乘以25

第三步:把第二步得到的數(shù)除以你想的這個(gè)數(shù)

1)若小明同學(xué)心里想的是數(shù)9,請(qǐng)幫他計(jì)算出最后結(jié)果:

.

2)老師說(shuō):同學(xué)們,無(wú)論你們心里想的是什么非零實(shí)數(shù),按照以上步驟進(jìn)行操作,得到的最后結(jié)果都相等,小明同學(xué)想驗(yàn)證這個(gè)結(jié)論,于是,設(shè)心里想的數(shù)是aa0),請(qǐng)你幫小明完成這個(gè)驗(yàn)證過(guò)程

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,.點(diǎn)上以每秒個(gè)單位長(zhǎng)度的速度向終點(diǎn)運(yùn)動(dòng).點(diǎn)沿方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),當(dāng)點(diǎn)不與點(diǎn)重合時(shí),連結(jié),以,為鄰邊作.當(dāng)點(diǎn)停止運(yùn)動(dòng)時(shí),點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為,重疊部分的圖形面積為

1)點(diǎn)到邊的距離    ,點(diǎn)到邊的距離    ;(用含的代數(shù)式表示)

2)當(dāng)點(diǎn)落在線段上時(shí),求的值;

3)求之間的函數(shù)關(guān)系式;

4)連結(jié),當(dāng)的一邊平行或垂直時(shí),直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB-1,2)是一次函數(shù)與反比例函數(shù)

)圖象的兩個(gè)交點(diǎn),AC⊥x軸于CBD⊥y軸于D

(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)大于反比例函數(shù)的值?

(2)求一次函數(shù)解析式及m的值;

(3)P是線段AB上的一點(diǎn),連接PCPD,若△PCA△PDB面積相等,求點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,邊的中點(diǎn),,垂足為點(diǎn),連接.則列四個(gè)結(jié)論:

;②;③;④.其中正確的結(jié)論有:

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形 ABCD 和正三角形 AEF 都內(nèi)接于⊙O,EF BCCD 分別相交于點(diǎn) G,H,則 的值為(

A.B.C.D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案