若:

   …,觀察前面計(jì)算過程,尋找計(jì)算規(guī)律計(jì)算.(直接寫出計(jì)算結(jié)果).

   并比較(填“”或“”或“=”).      

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖所示,∠AOB=45°,過OA上到點(diǎn)O的距離分別為1、3、5、7、9、11…的點(diǎn)作OA的垂線與OB相交,得到并標(biāo)出一組黑色梯形,它們的面積分別為S1、S2、S3、S4
(1)觀察圖形,填寫下表:

(2)對(duì)于第n個(gè)黑色梯形,寫出用n表示的Sn代數(shù)式;
(3)若用P表示前n個(gè)黑色梯形的面積和,寫出用n表示P的代數(shù)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)活動(dòng)課上,老師要求同學(xué)們先做下面的“循環(huán)分割”操作,然后再探索規(guī)律:
如圖1,是一等腰梯形紙片,其腰長(zhǎng)與上底長(zhǎng)相等,且底角分別60°和120°,按要求開始操作(每次分割,紙片均不得留有剩余);
精英家教網(wǎng)
第1次分割:將原等腰梯形紙片分割成3個(gè)等邊三角形;
第2次分割:將上次分割出的一個(gè)等邊三角形分割成3個(gè)全等的等腰梯形,然后將剛分割出的一個(gè)等腰梯形分割成3個(gè)等邊三角形;
以后按第2次分割的方法進(jìn)行下去…請(qǐng)解答下列問題:
(1)請(qǐng)你在圖2中畫出前兩次分割后的圖案;
(2)若原等腰梯形的面積為a,請(qǐng)你通過操作、觀察,將第2次,第3次分割后所得的一個(gè)最小等邊三角形的面積分別填入下表:
 
分割次數(shù)(n) 1 2 3
一個(gè)最小等邊三角形的面積(S)
1
3
a
   
(3)請(qǐng)你猜想,分割所得的一個(gè)最小等邊三角形面積S與分割次數(shù)n有何關(guān)系?(請(qǐng)直接用含a的式子表示,不需寫推理過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘄春縣模擬)今年我國多個(gè)省市遭受嚴(yán)重干旱,受旱災(zāi)的影響,4月份,我市某蔬菜價(jià)格呈上升趨勢(shì),其前四周每周的平均銷售價(jià)格變化如表:
周數(shù)x 1 2 3 4
價(jià)格y(元/千克) 2 2.2 2.4 2.6
(1)請(qǐng)觀察題中的表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí)直接寫出4月份y與x 的函數(shù)關(guān)系式;
(2)進(jìn)入5月,由于本地蔬菜的上市,此種蔬菜的平均銷售價(jià)格y(元/千克)從5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y與周數(shù)x的變化情況滿足二次函數(shù)y=-
1
20
x2+bx+c,請(qǐng)求出5月份y與x的函數(shù)關(guān)系式;
(3)若4月份此種蔬菜的進(jìn)價(jià)m(元/千克)與周數(shù)x所滿足的函數(shù)關(guān)系為m=
1
4
x+1.2,5月份此種蔬菜的進(jìn)價(jià)m(元/千克)與周數(shù)x所滿足的函數(shù)關(guān)系為m=-
1
5
x+2.試問4月份與5月份分別在哪一周銷售此種蔬菜一千克的利潤(rùn)最大?且最大利潤(rùn)分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

進(jìn)入三月以來,重慶的氣溫漸漸升高,羽絨服進(jìn)入了銷售淡季.為此重慶某百貨公司對(duì)某品牌的A款羽絨服進(jìn)行了清倉大處理.已知A款羽絨服的銷售價(jià)格y元與第x天(1≤x≤10,且為整數(shù))之間的關(guān)系可用如下表表示:
時(shí)間(x天) 1 2 3 4 5 6 7 8 9 10
售價(jià)y(元/件) 550 500 450 400 350 300 300 300 300 300
在銷售的前6天,A款羽絨服的銷售數(shù)量z1(件)與第x天的關(guān)系式為z1=20x+40(1≤x≤6且為整數(shù));后4天(7≤x≤10,且為整數(shù))的銷售數(shù)量z2件與第x天的關(guān)系如圖所示
(1)請(qǐng)觀察題中表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí),直接寫出y與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢(shì),直接寫出z2與x之間的一次函數(shù)關(guān)系式.
(2)若A款羽絨服的進(jìn)價(jià)為每件200元,該專柜共有5個(gè)員工,每位員工每天的工資為100元,該專柜每天所需的固定支出為1000元,請(qǐng)結(jié)合上述信息,求這10天內(nèi)哪天的利潤(rùn)最大,并求出這個(gè)最大利潤(rùn).
(3)在第(2)問的前提下,為了提高收益、減少庫存,商場(chǎng)在第11天作出以下決定:第11-15天繼續(xù)維持A款羽絨服的售價(jià),結(jié)果每天的銷售量均與第10天的持平,同時(shí)在第11-15天將B款羽絨服也作為促銷商品,而且作為銷售重點(diǎn),已知B款羽絨服的進(jìn)價(jià)仍為200元每件,銷售價(jià)格比A款羽絨服取得最大利潤(rùn)當(dāng)天的售價(jià)降低了a%,而每天銷售量則比第10天A款羽絨服的銷量提高了2a%,最后5天A、B兩款羽絨服的總利潤(rùn)為27100元,請(qǐng)你參考以下數(shù)據(jù),計(jì)算出a的值.
參考數(shù)據(jù):2.52=6.25,2.62=6.76,2.72=7.29,2.82=7.84.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探索研究:
(1)觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)之比是一個(gè)常數(shù),這個(gè)常數(shù)是
2
2
;根據(jù)此規(guī)律.如果n.(n為正整數(shù))表示這個(gè)數(shù)列的第n項(xiàng),那么a18=
218
218
,an=
2n
2n

(2)如果欲求1+3+32+33+…+320的值,
可令S=1+3+32+33+…+320,①
將①式兩邊同乘以3,得
3S=
3+32+33+…+320+321
3+32+33+…+320+321
,②
由②減去①式,得
S=
321-1
2
321-1
2

(3)用由特殊到一般的方法知:若數(shù)列a1,a2,a3,…an,從第二項(xiàng)開始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為q,則an=
a1qn-1
a1qn-1
(用含a1,q,n的代數(shù)式表示),如果這個(gè)常數(shù)q≠1,那么a1+a2+a3+…+an=
a1qn-a1
q-1
a1qn-a1
q-1
(用含a1,q,n的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案