【題目】我們定義:有一組對角相等的四邊形叫做等對角四邊形

1)如圖,四邊形ABCD內(nèi)接于O,點ECD的延長線上,且AEAD.證明:四邊形ABCE等對角四邊形

2)如圖,在等對角四邊形ABCD中,DABBCD53°B90°,sin53°≈,cos53°≈,tan53°≈.

3)如圖,在RtACD中,ACD90°,DAC30°CD4,若四邊形ABCD等對角四邊形,且BD,則BD的最大值是  .(直接寫出結(jié)果)

【答案】1)見解析;(2CD10;(3BD的最大值是4+4

【解析】

1)證明∠B=∠E,即可證明四邊形ABCE等對角四邊形;

2)過點DDEAB于點E,DFBC于點F,先證明四邊形EBFD為矩形,于是BEDF,BFDE,在RtCDF中,tanFCDtan53°,可設(shè)DF4x,CF3x,則CD5x BEDF4x,DEBF183x,AE174x,在RtADE中,∠A53°,tanA,于是3DE4AE,列出方程3183x)=4174x),求得x2,即CD5x10;

3)由∠ABC60°,可知點B在以AC為邊的等邊三角形的外接圓的上運動,當BD經(jīng)過圓心O時,BD最長,即為B1D的長,求出即可.

1)證明:∵四邊形ABCD內(nèi)接于⊙O,

∴∠B+ADC180°,

∵∠ADE+ADC180°

∴∠B=∠ADE,

AEAD

E=∠ADE,

∴∠B=∠E,

∴四邊形ABCE等對角四邊形;

2)如圖②,過點DDEAB于點E,DFBC于點F,

∴∠BED=∠BFD90°,

又∠B90°,

∴四邊形EBFD為矩形,

BEDF,BFDE,

RtCDF中,

tanFCDtan53°

設(shè)DF4x,CF3x ,則CD5x

BEDF4xDEBF183x,AE174x,

RtADE中,∠A53°,tanA,

3DE4AE,

3183x)=4174x),

x2

CD5x10

3)∵∠ACD90°,∠DAC30°,

∴∠CDA60°,∠ABC60°,

∴點B在以AC為邊的等邊三角形的外接圓的上運動,

∴當BD經(jīng)過圓心O時,BD最長,即為B1D的長,

如圖③,連接DO,與弧交于點B1,連接OC,作OEAC,與DC的延長線交于點E

∵∠ACD90°,∠DAC30°,CD4

AC4,

易知∠OCA30°,∠COE=∠OCA30°,

OCOB4CE2,OE,

DECE+DC2+46

OD

DB1OD+OB14+4,

BD的最大值是4+4

故答案為4+4

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同.

1)求每件甲種、乙種玩具的進價分別是多少元?

2)商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+ax+nb01≤n≤3,n為整數(shù)),其中a是從2、4、6三個數(shù)中任取的一個數(shù),b是從1、3、5三個數(shù)中任取的一個數(shù),定義方程有實數(shù)根為事件Ann1,23),當An的概率最小時,n的所有可能值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的是一個地球儀及它的平面圖,在平面圖中,點A、B分別為地球儀的南、北極點,直線AB與放置地球儀的平面交于點D,所夾的角度約為67°,半徑OC所在的直線與放置它的平面垂直,垂足為點E,DE=15cm,AD=14cm

1)求半徑OA的長(結(jié)果精確到0.1cm,參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39tan67°≈2.36

2)求扇形BOC的面積(π3.14,結(jié)果精確到1cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,分別以AB,CD為邊向外作等邊ABECDF,連接AF,CE.求證:四邊形AECF為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,階梯圖的每個臺階上都標著一個數(shù),從下到上的第1個至第4個臺階上依次標著﹣3,﹣2,﹣10,且任意相鄰四個臺階上數(shù)的和都相等.

1)求第五個臺階上的數(shù)x是多少?

2)求前21個臺階上的數(shù)的和是多少?

3)發(fā)現(xiàn):數(shù)的排列有一定的規(guī)律,第n個﹣2出現(xiàn)在第   個臺階上;

4)拓展:如果倩倩小同學一步只能上1個或者2個臺階,那么她上第一個臺階的方法有1種:11,上第二個臺階的方法有2種:1+1222,上第三個臺階的方祛有3種:1+1+13、1+232+13,…,她上第五個臺階的方法可以有   種.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】書香校園活動中,某校為了解學生家庭藏書情況,隨機抽取本校部分學生進行調(diào)查,并繪制成部分統(tǒng)計圖表如下:

類別

家庭藏書m

學生人數(shù)

A

0≤m≤25

20

B

26≤m≤100

a

C

101≤m≤200

50

D

m≥201

66

根據(jù)以上信息,解答下列問題:

(1)該調(diào)查的樣本容量為_____,a_____

(2)在扇形統(tǒng)計圖中,“A”對應扇形的圓心角為_____°;

(3)若該校有2000名學生,請估計全校學生中家庭藏書200本以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果批發(fā)商經(jīng)銷一種高檔水果,如果每千克盈利5元,每天可售出200千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進價不變的情況下,若每千克漲價0.1元,銷售量將減少1千克

1)現(xiàn)該商場保證每天盈利1500元,同時又要照顧顧客,那么每千克應漲價多少元?

2)若該商場單純從經(jīng)濟利益角度考慮,這種水果每千克漲價多少元,使該商場獲利最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,AC=BC,CCD//AB.若AD平分CAB,則下列說法錯誤的是(

A. BC=CD

B. BOOC=ABBC

C. CDO≌△BAO

D.

查看答案和解析>>

同步練習冊答案