【題目】對(duì)于三個(gè)數(shù)、、,用表示這三個(gè)數(shù)的中位數(shù),用表示這三個(gè)數(shù)中最大數(shù),例如:,.

解決問(wèn)題:

1)填空:如果,則的取值范圍為 ;

2)如果,求的值.

【答案】1;(2-30

【解析】

1)根據(jù)max{a,b,c}表示這三個(gè)數(shù)中最大數(shù),對(duì)于max{3,5-3x,2x-6}=3,可得不等式組:則,可得結(jié)論;
2)根據(jù)新定義和已知分情況討論:①2最大時(shí),x+4≤2時(shí),②2是中間的數(shù)時(shí),x+2≤2≤x+4,③2最小時(shí),x+2≥2,分別解出即可;

1)∵max{3,5-3x,2x-6}=3,
,
x的取值范圍為:,
故答案為:

22M{2x+2,x+4}=max{2,x+2,x+4},
分三種情況:①當(dāng)x+4≤2時(shí),即x≤-2,
原等式變?yōu)椋?/span>2x+4=2,x=-3,
x+2≤2≤x+4時(shí),即-2≤x≤0,
原等式變?yōu)椋?/span>2×2=x+4x=0,
③當(dāng)x+2≥2時(shí),即x≥0,
原等式變?yōu)椋?/span>2x+2=x+4,x=0,
綜上所述,x的值為-30;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若△ABC中,其中一個(gè)內(nèi)角是另一個(gè)內(nèi)角的一半,則稱△ABC為“半角三角形”.

1)若RtABC為半角三角形,∠A=90°,則其余兩個(gè)角的度數(shù)為.

2)如圖,以△ABC的邊AB為直徑畫(huà)圓,與邊AC交于M,與邊BC交于N,已知CN=AC

①求證:∠C=60°.

②若△ABC是半角三角形,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖像與軸交于兩點(diǎn),交軸于點(diǎn),點(diǎn)、是二次函數(shù)圖像上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖像經(jīng)過(guò)、

1)請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);

2)求二次函數(shù)的解析式;

3)根據(jù)圖像直接寫(xiě)出使一次函數(shù)值大于二次函數(shù)值的的取值范圍;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過(guò)點(diǎn)D和M,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)D,與BC的交點(diǎn)為N.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)若點(diǎn)P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半徑為10的⊙中,弦,所對(duì)的圓心角分別是,若,則弦的長(zhǎng)等于(  )

A. 18B. 16C. 10D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PCBA的延長(zhǎng)線于點(diǎn)POF∥BCACAC點(diǎn)E,交PC于點(diǎn)F,連接AF

1)判斷AF⊙O的位置關(guān)系并說(shuō)明理由;

2)若⊙O的半徑為4,AF=3,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC在平面直角坐標(biāo)系中,點(diǎn)Ay軸上,點(diǎn)C軸上,OC=4,直線經(jīng)過(guò)點(diǎn)A,交軸于點(diǎn)D,點(diǎn)E在線段BC上,EDAD.

1)求點(diǎn)E的坐標(biāo);

2)聯(lián)結(jié)BD,求cotBDE的值;

3)點(diǎn)G在直線BC,且∠EDG=45°,求點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)D,點(diǎn)C為拋物線的頂點(diǎn),過(guò)B,C兩點(diǎn)作直線BC,拋物線上的一點(diǎn)F的橫坐標(biāo)是,過(guò)點(diǎn)F作直線FG//BCx軸于點(diǎn)G.

1)點(diǎn)P是直線BC上方拋物線上的一動(dòng)點(diǎn),連接PG與直線BC交于點(diǎn)E,連接EF,PF,當(dāng)的面積最大時(shí),在x軸上有一點(diǎn)R,使PR+CR的值最小,求出點(diǎn)R的坐標(biāo),并直接寫(xiě)出PR+CR的最小值;

2)如圖2,連接AD,作AD的垂直平分線與x軸交于點(diǎn)K,平移拋物線,使拋物線的頂點(diǎn)C在射線BC上移動(dòng),平移的距離是t,平移后拋物線上點(diǎn)A,點(diǎn)C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,點(diǎn)C′,連接A′C′,A′KC′K,A′C′K是否能為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E,F(xiàn),則EF長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案