【題目】如圖,對折矩形紙片ABCD,使AB與DC重合,得到折痕MN,將紙片展平;再一次折疊,使點D落到MN上的點F處,折痕AP交MN于E;延長PF交AB于G.求證:
(1)△AFG≌△AFP;
(2)△APG為等邊三角形.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)由折疊的性質得到M、N分別為AD、BC的中點,利用平行線分線段成比例得到F為PG的中點,再由折疊的性質得到AF垂直于PG,利用SAS即可得證;
(2)由(1)的全等三角形,得到對應邊相等,利用三線合一得到∠2=∠3,由折疊的性質及等量代換得到∠PAG為60°,根據AP=AG且有一個角為60°即可得證.
(1)由折疊可得:M、N分別為AD、BC的中點,
∵DC∥MN∥AB,
∴F為PG的中點,即PF=GF,
由折疊可得:∠PFA=∠D=90°,∠1=∠2,
在△AFP和△AFG中,
,
∴△AFP≌△AFG(SAS);
(2)∵△AFP≌△AFG,
∴AP=AG,
∵AF⊥PG,
∴∠2=∠3,
∵∠1=∠2,
∴∠1=∠2=∠3=30°,
∴∠2+∠3=60°,即∠PAG=60°,
∴△APG為等邊三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中:
①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④當x>1時,y隨著x的增大而增大.
正確的說法有 . (請寫出所有正確的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:長方形ABCD在坐標平面內的位置如圖所示, A(1,1) C(-3,-4),點P從點A出發(fā),沿著A→B→C→D→A的路徑,以每秒個單位的速度運動.運動一周回到A點時停止運動.設運動時間為t秒.
(1)直接寫出點B、點D的坐標.
(2)當t=6秒時,寫出P點的坐標.
(3)當點P運動到與x軸的距離為個單位時直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,在△ABC中,AB=AC,點D是線段BC上一個動點,以AD為腰在線段AD的右側作△ADE,且AD=AE。
(1)如圖①,當∠BAC=∠DAE=90°時,試判斷線段BD和CE有什么關系,并給出證明:
(2)在(1)的條件下,若BC=4.試判斷四邊形ADCE的面積是否發(fā)生變化,若不變,求出四邊形ADCE的面積;若變化,請說明理由;
(3)如圖②,若∠BAC=∠DAE=120°,BC=4,試探索△DCE的面積是否存在最大值,若存在,求出此時∠DEC的度數(shù),若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點M是AB的中點,點P在MB上.分別以AP,PB為邊,作正方形APCD和正方形PBEF,連結MD和ME.設AP=a,BP=b,且a+b=10,ab=20.則圖中陰影部分的面積為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是矩形ABCD的邊AD上的一動點,矩形的兩條邊AB,BC的長分別是6和8,則點P到矩形的兩條對角線距離之和PE+PF是( )
A.4.8
B.5
C.6
D.7.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC、∠ACB的平分線BD,CE相交于O點,且BD交AC于點D,CE交AB于點E.某同學分析圖形后得出以下結論:①BCD≌CBE;②BAD≌BCD;③BDA≌CEA;④BOE≌COD;⑤ ACE≌BCE;上述結論一定正確的是
A. ①②③ B. ②③④ C. ①③⑤ D. ①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:∠MON=30°,點A1、A2、A3 在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=a,則△A6B6A7的邊長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為 1,在方格紙內將△ABC經過一次平移后得到△A′B′C′,圖中標出了點B 的對應點 B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
(2)線段 AA′與線段 BB′的數(shù)量和位置關系是___________;
(3)求△A′B′C′的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com