【題目】如圖在梯形ABCD,ABDCABC90°,A45°AB30,BCx,其中15<x<30.過點(diǎn)DDEAB于點(diǎn)E,將△ADE沿直線DE折疊,使點(diǎn)A落在點(diǎn)FDFBC于點(diǎn)G.

(1)用含x的代數(shù)式表示BF的長.

(2)設(shè)四邊形DEBG的面積為S,S關(guān)于x的函數(shù)表達(dá)式.

(3)當(dāng)x為何值時(shí)S有最大值?并求出這個(gè)最大值.

【答案】(1)2x-30;(2) S=-x260x-450;(3)x=20時(shí),S最大值為150

【解析】試題分析:(1)根據(jù)等式BF=AF-AB=2AE-AB=2DE-AB=2BC-AB,用含x的代數(shù)式表示BF的長;
(2)根據(jù)等量關(guān)系“S=SDEF-SGBF”列出Sx的函數(shù)關(guān)系式;
(3)根據(jù)(2)中的函數(shù)關(guān)系式和x的取值范圍求S的最大值.

試題解析:

(1)DEBCx,A=45°,DEAE,

AEDEx.

由折疊知,EFAEx,

BFAFAB=2x-30.

(2)SDEFEF·DEx2,

SBFGBF·BG (2x-30)2,

Sx2 (2x-30)2=-x260x-450.

(3)15<x<30

當(dāng)x=20時(shí),S有最大值S最大=150.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系內(nèi),點(diǎn)A-2-3)在(

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+2x經(jīng)過原點(diǎn)O,且與直線y=x﹣2交于B,C兩點(diǎn).

(1)求拋物線的頂點(diǎn)A的坐標(biāo)及點(diǎn)B,C的坐標(biāo);

(2)求證:∠ABC=90°;

(3)在直線BC上方的拋物線上是否存在點(diǎn)P,使△PBC的面積最大?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

(4)若點(diǎn)N為x軸上的一個(gè)動點(diǎn),過點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示一輛汽車在直線形的公路AB上由AB行駛,C,D分別是位于公路AB兩側(cè)的村莊.

(1)該汽車行駛到公路AB上的某一位置C時(shí)距離村莊C最近,行駛到D位置時(shí),距離村莊D最近,請?jiān)诠?/span>AB上作出CD的位置(保留作圖痕跡);

(2)當(dāng)汽車從A出發(fā)向B行駛時(shí)在哪一段路上距離村莊C越來越遠(yuǎn),而離村莊D越來越近?(只敘述結(jié)論不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先去括號,再合并同類項(xiàng):3(2x2﹣y2)﹣2(3y2﹣2x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知O為原點(diǎn),四邊形ABCD為平行四邊形,A、B、C的坐標(biāo)分別是A(﹣5,1),B(﹣2,4),C(5,4),點(diǎn)D在第一象限.
(1)寫出D點(diǎn)的坐標(biāo);
(2)求經(jīng)過B、D兩點(diǎn)的直線的解析式,并求線段BD的長;
(3)將平行四邊形ABCD先向右平移1個(gè)單位長度,再向下平移1個(gè)單位長度所得的四邊形A1B1C1D1四個(gè)頂點(diǎn)的坐標(biāo)是多少?并求出平行四邊形ABCD與四邊形A1B1C1D1重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】看圖填空:

(1)1和∠3是直線________被直線____所截得的______;

(2)1和∠4是直線_________被直線____所截得的______;

(3)B和∠2是直線_________被直線_____所截得的______;

(4)B和∠4是直線_________被直線_____所截得的_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+y軸相交于點(diǎn)A,點(diǎn)B與點(diǎn)O關(guān)于點(diǎn)A對稱

1)填空:點(diǎn)B的坐標(biāo)是

2)過點(diǎn)B的直線y=kx+b(其中k0)與x軸相交于點(diǎn)C,過點(diǎn)C作直線l平行于y軸,P是直線l上一點(diǎn),且PB=PC,求線段PB的長(用含k的式子表示),并判斷點(diǎn)P是否在拋物線上,說明理由;

3)在(2)的條件下,若點(diǎn)C關(guān)于直線BP的對稱點(diǎn)C′恰好落在該拋物線的對稱軸上,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,是中心對稱圖形的是( )

A. 等腰三角形 B. 直角三角形 C. 正五邊形 D. 平行四邊形

查看答案和解析>>

同步練習(xí)冊答案