已知:如圖,△ABC中,∠ABC=∠C,BD是∠ABC的平分線,且∠BDE=∠BED,∠A=100°,求∠DEC的度數(shù).
解:因?yàn)椤螦=100°,∠ABC=∠C,
所以∠ABC=40°,
而BD平分∠ABC,
所以∠DBE=20°.
而∠BDE=∠BED,
所以∠DEB=(180°-20°)=80°,
所以∠DEC=100°解析:
根據(jù)等腰三角形兩底角相等,可求出∠ABC的度數(shù),根據(jù)角平分線求出∠DBE的度數(shù),根據(jù)∠BDE=∠BED,求出∠DEB的度數(shù),最后通過(guò)鄰補(bǔ)角求解
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖△ABC內(nèi)接于⊙O,OH⊥AC于H,過(guò)A點(diǎn)的切線與OC的延長(zhǎng)線交于點(diǎn)D,∠B=30°,OH=2
3
.請(qǐng)求出:
(1)∠AOC的度數(shù);
(2)線段AD的長(zhǎng)(結(jié)果保留根號(hào));
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖△ABC中,AF:FC=1:2,且BD=DF,那么BE:EC等于(  )
A、1:4B、1:3C、2:5D、2:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖△ABC中,∠C=90°,AD平分∠BAC,CD=
3
,BD=2
3
,求平分線AD的長(zhǎng),AB,AC的長(zhǎng),外接圓的面積,內(nèi)切圓的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖△ABC中,∠A=90°,AB=AC,D是斜邊BC的中點(diǎn),E,F(xiàn)分別在線段AB,AC上,且∠EDF=90°
(1)求證:△DEF為等腰直角三角形;
(2)求證:S四邊形AEDF=S△BDE+S△CDF;
(3)如果點(diǎn)E運(yùn)動(dòng)到AB的延長(zhǎng)線上,F(xiàn)在射線CA上且保持∠EDF=90°,△DEF還仍然是等腰直角三角形嗎?請(qǐng)畫圖說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖△ABC中,AB=AC,CD⊥AD于D,CD=
12
BC,D在△ABC外,求證:∠ACD=∠B.

查看答案和解析>>

同步練習(xí)冊(cè)答案