如圖,在△ABC中,AB=AC,延長(zhǎng)BC至D使CD=BC,點(diǎn)E在AC上,過(guò)E作EF∥CD,過(guò)C作CG∥AB交EF于G,連BG,DE,求證:△BCG≌△DGE.

證明:∵EF∥BC,CG∥AB,
∴∠GEC=∠ACB,∠EGC=∠GCD,∠GCD=∠ABC,
∵AC=BA,
∴∠ABC=∠ACB,
∴∠GCD=∠ABC,∠CEG=∠CGE,
∴CE=CG,∠ECD=∠GCB,
在△BCG和△DCE中
BC=CD,∠BCG=∠DCE,CE=CG,
∴△BCG≌△DGE.
分析:根據(jù)平行線的性質(zhì)推出∠GEC=∠ACB,∠EGC=∠GCD,∠GCD=∠ABC,根據(jù)等腰三角形性質(zhì)求出∠GCD=∠ABC,∠CEG=∠CGE,推出CE=CG,∠ECD=∠GCB,根據(jù)SAS即可證出答案.
點(diǎn)評(píng):本題主要考查對(duì)平行線的性質(zhì),等腰三角形的性質(zhì)和判定,全等三角形的判定等知識(shí)點(diǎn)的理解和掌握,能綜合運(yùn)用性質(zhì)進(jìn)行推理是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案