【題目】如圖,已知AB、CD、EF相交于點O,EF⊥AB,OG為∠COF的平分線,OH為∠DOG的平分線.
(1)若∠AOC∶∠COG=4∶7,求∠DOF的大小;
(2)若∠AOC∶∠DOH=8∶29,求∠COH的大小.
【答案】(1)∠DOF=110° (2)∠COH=107.5°
【解析】本題考查對頂角的定義、性質垂直定義、角平分線的定義和根據圖形寫出角的和差關系式
解:(1)∵AB、CD、EF相交于點O,∴∠AOC=∠BOD
∵EF⊥AB ∴∠AOF=∠BOF=∠AOE=∠BOE=90°
∵OG為∠COF的平分線,∴∠COG=∠GOF
∵∠AOC∶∠COG=4∶7
∴∠AOC∶∠GOF=4∶7,∠AOC∶∠COF=4∶14 ,∠AOC∶∠AOF=4∶18
∴∠AOC=∠BOD=20°
∠DOF=∠BOD+∠BOF=20°90°=110°
(2)由(1)知:∠AOC=∠BOD ,∠COG=∠GOF,∠AOF=∠BOF=90°
∵OH為∠DOG的平分線.∴∠DOH=∠GOH
∵∠AOC∶∠DOH=8∶29,∴∠BOD∶∠BOH=8∶21;
設∠BOD=8k,∠COG=∠GOF=x,則∠GOH=29k,∠BOH=21k ,由∠AOF=∠BOF=90°得
8k+2x=29k+21k-x 解得x=14k ,
代入29k+21k-14k=90°解得k=2.5°
∠COH=∠COH+∠COH+∠COH=14k+29k=43k=43×2.5°=107.5°
科目:初中數學 來源: 題型:
【題目】已知△A1B1C1,△A2B2C2的周長相等,現有兩個判斷:
①若A1B1=A2B2,A1C1=A2C2,則△A1B1C1≌△A2B2C2;
②若∠A1=∠A2,∠B1=∠B2,則△A1B1C1≌△A2B2C2,
對于上述的兩個判斷,下列說法正確的是( 。
A. ①正確,②錯誤 B. ①錯誤,②正確 C. ①,②都錯誤 D. ①,②都正確
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A從原點出發(fā)沿數軸向左運動,同時,點B也從原點出發(fā)沿數軸向右運動.已知點A的速度是1單位長度/秒,點B的速度是點A的速度的4倍(速度單位:單位長度/秒).
(1)求請在數軸上標出A、B兩點從原點出發(fā)運動3秒時的位置;
(2)若A、B兩點在(1)中的位置,數軸上是否存在一點P到點A,點B的距離之和為16,并求出此時點P表示的數;若不存在,請說明理由.
(3)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數軸向左運動時,另一點C同時從B點位置出發(fā)向A點運動,當遇到A點后,立即返回向B點運動,遇到B點后又立即返回向A點運動,如此往返,直到B點追上A點時,C點立即停止運動.若點C一直以10單位長度/秒的速度勻速運動,那么點C從開始運動到停止運動,行駛的路程是多少個單位長度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某開發(fā)商進行商鋪促銷,廣告上寫著如下條款:
購買商鋪后,都由開發(fā)商代為租賃10年,10年期滿后再由開發(fā)商以比原商鋪標價高20%的價格進行回購,投資者可在以下兩種購鋪方案中做出選擇:
方案一:投資者按商鋪標價一次性付清鋪款,每年可以獲得的租金為商鋪標價的5%.
方案二:投資者按商鋪標價的八五折一次性付清鋪款,4年后每年可以獲得的租金為商鋪標價的5%,但要繳納租金的10%作為管理費用.
(1)請問:投資者選擇哪種購鋪方案,10年后所獲得的投資收益率更高?為什么?(注:投資收益率=×100%)
(2)(列方程求解)某投資者按方案一購買商鋪,因資金周轉,決定向銀行貸鋪款的20%并于一年后付清貸款,已知貸款年利率為5%.那么10年后該投資者獲得55.2萬元的收益,問鋪款是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點A在數軸上對應的數為﹣3,點B對應的數為2.
(1)如圖1點C在數軸上對應的數為x,且x是方程2x+1=x﹣5的解,在數軸上是否存在點P使PA+PB=BC+AB?若存在,求出點P對應的數;若不存在,說明理由;
(2)如圖2,若P點是B點右側一點,PA的中點為M,N為PB的三等分點且靠近于P點,當P在B的右側運動時,有兩個結論:①PM﹣BN的值不變;② BN的值不變,其中只有一個結論正確,請判斷正確的結論,并求出其值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有筐白菜,以每筐千克為標準,超過的千克數記作正數,不足的千克數記作負數,稱后的記錄如下:
回答下列問題:
(1)這筐白菜中,最接近千克的那筐白菜為 千克;
(2)若白菜每千克售價元,則出售這8筐白菜可賣多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將△ABO繞點B順時針旋轉到△A1BO1的位置,使點A的對應點A1落在直線y= x上,再將△A1BO1繞點A1順時針旋轉到△A1B1O2的位置,使點O1的對應點O2落在直線y= x上,依次進行下去…,若點A的坐標是(0,1),點B的坐標是( ,1),則點A8的橫坐標是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠C=90 o,AC=BC=4,點D是AB的中點,E.F在射線AC與射線CB上運動,且滿足AE=CF;當點E運動到與點C的距離為1時,則△DEF的面積為___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是⊙O的內接三角形,AB是⊙O的直徑,OD⊥AB于點O,分別交AC、CF于點E、D,且DE=DC.
(1)求證:CF是⊙O的切線;
(2)若⊙O的半徑為5,BC= ,求DE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com