【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長度比梯子底端B離墻的距離大5米.
(1)這個云梯的底端B離墻多遠(yuǎn)?
(2)如圖(2),如果梯子的頂端下滑了8m(AC的長),那么梯子的底部在水平方向右滑動了多少米?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖1,在△ABC和△ADE中,AB=AC=AD=AE,當(dāng)∠BAC+∠DAE=180° 時,我們稱△ABC與△DAE互為“頂補(bǔ)等腰三角形”,△ABC的邊BC上的高線AM叫做△ADE的“頂心距”,點(diǎn)A叫做“旋補(bǔ)中心”.
(1)特例感知:在圖2,圖3中,△ABC與△DAE互為“頂補(bǔ)等腰三角形”,AM是“頂心距”。
①如圖2,當(dāng)∠BAC=90°時,AM與DE之間的數(shù)量關(guān)系為AM= DE;
②如圖3,當(dāng)∠BAC=120°,ED=6時,AM的長為 。
(2)猜想論證:
在圖1中,當(dāng)∠BAC為任意角時,猜想AM與DE之間的數(shù)量關(guān)系,并給予證明。
(3)拓展應(yīng)用
如圖4,在四邊形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CA=,在四邊ABCD的內(nèi)部找到點(diǎn)P,使得△PAD與△PBC互為“頂補(bǔ)等腰三角形”。并回答下列問題。
①請在圖中標(biāo)出點(diǎn)P的位置,并描述出該點(diǎn)的位置為 ;
②直接寫出△PBC的“頂心距”的長為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】墻壁處有一盞燈(如圖),小明站在處測得他的影長與身長相等都為,小明向墻壁走到處發(fā)現(xiàn)影子剛好落在A點(diǎn),則燈泡與地面的距離________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn),已知點(diǎn).
(1)求出點(diǎn),點(diǎn)的坐標(biāo).
(2)是直線上一動點(diǎn),且和的面積相等,求點(diǎn)坐標(biāo).
(3)如圖2,平移直線,分別交軸,軸于交于點(diǎn),,過點(diǎn)作平行于軸的直線,在直線上是否存在點(diǎn),使得是等腰直角三角形?若存在,請直接寫出所有符合條件的點(diǎn)的坐標(biāo).
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,設(shè)一次函數(shù)的圖象是直線.
(1)如果把向下平移個單位后得到直線,求的值;
(2)當(dāng)直線過點(diǎn)和點(diǎn)時,且,求的取值范圍;
(3)若坐標(biāo)平面內(nèi)有點(diǎn),不論取何值,點(diǎn)均不在直線上,求所需滿足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠C=90°.
(1)用直尺和圓規(guī)作⊙O,使它經(jīng)過A、B、D三點(diǎn)(保留作圖痕跡);
(2)點(diǎn)C是否在⊙O上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解九年級名學(xué)生的體育綜合素質(zhì),隨機(jī)抽查了名學(xué)生進(jìn)行體育綜合測試,所得成績整理分成五組,并制成如下頻數(shù)分布表和扇形統(tǒng)計圖。
頻數(shù)分布表:
組別 | 成績(分) | 頻數(shù) |
請你根據(jù)以上圖表提供的信息,解答下列問題:
(1)頻數(shù)分布表中的 ;
(2)扇形統(tǒng)計圖中,組所對應(yīng)的扇形圓心角的度數(shù)是_ 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點(diǎn)10千米.他騎公共自行車比自駕車平均每小時少行駛45千米,他從家出發(fā)到上班地點(diǎn),騎公共自行車所用的時間是自駕車所用的時間的4倍.小張騎公共自行車平均每小時行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC=a ,AB=c,AC=b,則不能作為判定△ABC是直角三角形的條件的是( )
A.B.∠A∶∠B∶∠C=1∶4∶3
C.a∶b∶c =7∶24∶25D.a∶b∶c =4∶5∶6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com