已知AD是△ABC的中線,∠ADC=45°,把△ADC沿AD所在直線對(duì)折,點(diǎn)C落在點(diǎn)E的位置(如圖),則∠EBC等于    度.
【答案】分析:根據(jù)翻折不變性,可知△ADC≌△ADE,于是DE=DC,又因?yàn)锳D是△ABC的中線,可知BD=CD,于是有BD=DE,進(jìn)而求出∠EBC的度數(shù).
解答:解:根據(jù)翻折不變性,可知△ADC≌△ADE,
∴DE=DC,∠ADE=∠ADC=45°,
∴∠EDC=90°,
∴∠EDC=90°.
又∵AD是△ABC的中線,
∴BD=CD,
于是,BD=DE,
∴∠EBC=45°.
故答案為45°.
點(diǎn)評(píng):此題考查了翻折變換,找到變化過程中的不變量是解答此類問題的關(guān)鍵,同時(shí)要尋找圖形中的直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點(diǎn)D,延長DA交△ABC的外接圓精英家教網(wǎng)于點(diǎn)F,連接FB、FC.
(1)求證:FB=FC;
(2)求證:FB2=FA•FD;
(3)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=6cm,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、如圖,已知AD是△ABC的中線,AE=EF=FC,下面給出三個(gè)關(guān)系式:①AG:AD=1:2;②GE:BE=1:4;③GE:BE=3:4,其中正確的為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖所示,已知AD是△ABC的中線,CE是△ACD的中線,S△ACE=4cm2,則S△ABC=
16
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、已知AD是△ABC的角平分線,點(diǎn)E、F分別是邊AB,AC的中點(diǎn),連接DE,DF,在不再連接其他線段的前提下,要使四邊形AEDF成為菱形,還需添加一個(gè)條件,這個(gè)條件可以是
AB=AC或∠B=∠C或AE=AF
(答案不唯一).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖,已知D是△ABC的邊AB上一點(diǎn),F(xiàn)C∥AB,DF交AC于點(diǎn)E,DE=EF.求證:E是AC的中點(diǎn).
(2)如圖,已知AD是△ABC的角平分線,DE∥AC交AB于點(diǎn)E,DF∥AB交AC于點(diǎn)F.求證:四邊形AEDF是菱形.

查看答案和解析>>

同步練習(xí)冊答案