已知:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=-1,與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中A(-3,0)、C(0,-2).

(1)求這條拋物線的函數(shù)表達(dá)式.

(2)已知在對(duì)稱軸上存在一點(diǎn)P,使得△PBC的周長(zhǎng)最小.請(qǐng)求出點(diǎn)P的坐標(biāo).

(3)若點(diǎn)D是線段OC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過(guò)點(diǎn)D作DE∥PC交x軸于點(diǎn)E.連接PD、PE.設(shè)CD的長(zhǎng)為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說(shuō)明S是否存在最大值,若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由.

答案:
解析:

  解:(1)因?yàn)檫^(guò)點(diǎn)所以c=-2  1分

  由題意得 解得ab,c=-2  3分

  ∴此拋物線的解析式為  4分

  (2)連結(jié)、.因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/30A2/0842/0029/b98949747302b78532dfdf385374ac37/C/Image57.gif" width=26 height=18>的長(zhǎng)度一定,所以周長(zhǎng)最小,就是使最。點(diǎn)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)是點(diǎn),與對(duì)稱軸的交點(diǎn)即為所求的點(diǎn)

  設(shè)直線AC的表達(dá)式為y=kx+b

  則 解得

  ∴此直線的表達(dá)式為  8分

  把代入得

  ∴點(diǎn)的坐標(biāo)為  9分

  (3)存在最大值  10分

  理由:∵ ∴

  ∴ ∴OE=3-m,連結(jié)

  

 。

  ,∵,∴當(dāng)時(shí),  14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線yax 2bx-4a經(jīng)過(guò)A(-1,0)、C(0,4)兩點(diǎn),與x軸交于另一點(diǎn)B

(1)求拋物線的解析式;

(2)若點(diǎn)D(m,m+1)在第一象限的拋物線上, 求點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)的坐標(biāo);

(3)在(2)的條件下,連結(jié)BD,若點(diǎn)P為拋物線上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線yax+bx+c軸交于兩點(diǎn),若兩點(diǎn)的橫坐標(biāo)分別是一元二次方程的兩個(gè)實(shí)數(shù)根,與軸交于點(diǎn)(0,3),

1.(1)求拋物線的解析式;

2.(2)在此拋物線上求點(diǎn),使.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京師大附中九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

 已知拋物線yax+bx+c軸交于兩點(diǎn),若兩點(diǎn)的橫坐標(biāo)分別是一元二次方程的兩個(gè)實(shí)數(shù)根,與軸交于點(diǎn)(0,3),

1.(1)求拋物線的解析式;

2.(2)在此拋物線上求點(diǎn),使.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年北京師大附中九年級(jí)第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

已知拋物線yax+bx+c軸交于兩點(diǎn),若兩點(diǎn)的橫坐標(biāo)分別是一元二次方程的兩個(gè)實(shí)數(shù)根,與軸交于點(diǎn)(0,3),

1.(1)求拋物線的解析式;

2.(2)在此拋物線上求點(diǎn),使.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆湖南省九年級(jí)下學(xué)期第一次月考考試數(shù)學(xué)卷 題型:選擇題

.(13分)已知拋物線y=ax 2+bx+c經(jīng)過(guò)O(0,0),A(4,0),B(3,)三點(diǎn),連接AB,過(guò)點(diǎn)B作BC∥軸交拋物線于點(diǎn)C.動(dòng)點(diǎn)E、F分別從O、A兩點(diǎn)同時(shí)出發(fā),其中點(diǎn)E沿線段OA以每秒1個(gè)單位長(zhǎng)度的速度向A點(diǎn)運(yùn)動(dòng),點(diǎn)F沿折線A→B→C以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng).設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為t(秒).

(1)求拋物線的解析式;

(2)記△EFA的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并求S的最大值,指出此時(shí)△EFA的形狀;

(3)是否存在這樣的t值,使△EFA是直角三角形?若存在,求出此時(shí)E、F兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案