【題目】李師傅要給-塊長9米,寬7米的長方形地面鋪瓷磚.如圖,現(xiàn)有AB兩種款式的瓷磚,且A款正方形瓷磚的邊長與B款長方形瓷磚的長相等, B款瓷磚的長大于寬.已知一塊A款瓷磚和-B款瓷磚的價格和為140; 3A款瓷磚價格和4B款瓷磚價格相等.請回答以下問題:

(1)分別求出每款瓷磚的單價.

(2)若李師傅買兩種瓷磚共花了1000 元,且A款瓷磚的數(shù)量比B款多,則兩種瓷磚各買了多少塊?

(3)李師傅打算按如下設(shè)計圖的規(guī)律進行鋪瓷磚.A款瓷磚的用量比B款瓷磚的2倍少14塊,且恰好鋪滿地面,則B款瓷磚的長和寬分別為_ (直接寫出答案).

【答案】(1)A款瓷磚單價為80元,B款單價為60.(2)買了11A款瓷磚,2B;8A款瓷磚,6B.3B款瓷磚的長和寬分別為1,1,.

【解析】

1)設(shè)A款瓷磚單價x元,B款單價y元,根據(jù)一塊A款瓷磚和一塊B款瓷磚的價格和為140元;3A款瓷磚價格和4B款瓷磚價格相等列出二元一次方程組,求解即可;

2)設(shè)A款買了m塊,B款買了n塊,且m>n,根據(jù)共花1000 元列出二元一次方程,求出符合題意的整數(shù)解即可;

3)設(shè)A款正方形瓷磚邊長為a米,B款長為a米,寬b米,根據(jù)圖形以及“A款瓷磚的用量比B款瓷磚的2倍少14可列出方程求出a的值,然后由是正整教分情況求出b的值.

: (1)設(shè)A款瓷磚單價x元,B款單價y元,

則有

解得

: A款瓷磚單價為80元,B款單價為60元;

(2)設(shè)A款買了m塊,B款買了n塊,且m>n,

80m+60n=1000,即4m+3n=50

m,n為正整數(shù),且m>n

m=11n=2;m=8時,n=6,

答:買了11A款瓷磚,2B款瓷磚或8A款瓷磚,6B款瓷磚;

(3)設(shè)A款正方形瓷磚邊長為a米,B款長為a米,寬b.

由題意得:,

解得a=1.

由題可知,是正整教.

設(shè) (k為正整數(shù)),

變形得到,

k=1時,,故合去),

k=2時,, 故舍去),

k=3時,,

k=4時,,

: B款瓷磚的長和寬分別為1,1.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

在學習分式方程及其解法過程中,老師提出一個問題:若關(guān)于x的分式方程的解為正數(shù),求a的取值范圍?

經(jīng)過小組交流討論后,同學們逐漸形成了兩種意見:

小明說:解這個關(guān)于x的分式方程,得到方程的解為x=a﹣2.由題意可得a﹣2>0,所以a>2,問題解決.

小強說:你考慮的不全面.還必須保證a≠3才行.

老師說:小強所說完全正確.

請回答:小明考慮問題不全面,主要體現(xiàn)在哪里?請你簡要說明:   

完成下列問題:

(1)已知關(guān)于x的方程=1的解為負數(shù),求m的取值范圍;

(2)若關(guān)于x的分式方程=﹣1無解.直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AD是∠BAC的平分線,DEABE,FAC上,且BD=DF

1)求證:CF=EB

2)試判斷ABAF,EB之間存在的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點,BEAC,垂足為點F,連接DF,分析下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DFDC;④tan∠CAD.其中正確的結(jié)論有( )

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校在校運會之前想了解九年級女生一分鐘仰臥起坐得分情況(滿分為7分),在九年級500名女生中隨機抽出60名女生進行一次抽樣摸底測試所得數(shù)據(jù)如下表:

1)從表中看出所抽的學生所得的分數(shù)數(shù)據(jù)的眾數(shù)是______

A.40% B.7 C.6.5 D.5%

2)請將下面統(tǒng)計圖補充完整.

3)根據(jù)上述抽查,請估計該校考試分數(shù)不低于6分的人數(shù)會有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AC與BD相交于點O.若 AO=3,∠OBC=30°,求矩形的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形OP1A1B1,A1P2A2B2A2P3A3B3,……,An-1PnAnBn都是正方形,對角線OA1,A1A2,A2A3,……,An-1An都在y軸上(n≥1的整數(shù)),點P1x1,y1),P2x2,y2),……,Pnxn,yn)在反比例函數(shù)y=x0)的圖象上,并已知B1-1,1.

1)求反比例函數(shù)y=的解析式;

2)求點P2P3的坐標;

3)由(1)、(2)的結(jié)果或規(guī)律試猜想并直接寫出:PnBnO的面積為 ,點Pn的坐標為______(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】瑞士的一位中學教師巴爾末從光譜數(shù)據(jù),…中,成功地發(fā)現(xiàn)了其規(guī)律,從而得到了巴爾末公式,繼而打開了光譜奧妙的大門.請你根據(jù)這個規(guī)律寫出第9個數(shù)_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃購進A、B兩種新型節(jié)能臺燈,已知B型節(jié)能臺燈每盞進價比A型的多40元,且用3000元購進的A型節(jié)能臺燈與用5000元購進的B型節(jié)能臺燈的數(shù)量相同.

1)求每盞A型節(jié)能臺燈的進價是多少元?

2)商場將購進AB兩型節(jié)能臺燈100盞進行銷售,A型節(jié)能臺燈每盞的售價為90元,B型節(jié)能臺燈每盞的售價為140元,且B型節(jié)能臺燈的進貨數(shù)量不超過A型節(jié)能臺燈數(shù)量的2倍.應(yīng)怎樣進貨才能使商場在銷售完這批臺燈時利最多?此時利潤是多少元?

查看答案和解析>>

同步練習冊答案