精英家教網 > 初中數學 > 題目詳情

(四川內江)正方形的邊心距與半徑的比值為________.

答案:略
解析:

如圖,連接BO,OEAB

∵∠EBO=45°

BE=EO

又∵


提示:

本題考點:正多邊形的計算


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2011四川內江,加試5,12分)同學們,我們曾經研究過n×n的正方形網格,得到了網格中正方形的總數的表達式為12+22+32+…+n2.但n為100時,應如何計算正方形的具體個數呢?下面我們就一起來探究并解決這個問題.首先,通過探究我們已經知道0×1+1×2+2×3+…+(n—1)×n=n(n+1)(n—1)時,我們可以這樣做:
(1)觀察并猜想:
12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2)
12+22+32=(1+0)×1+(1+1)×2+(1+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+               
=1+0×1+2+1×2+3+2×3+                        
=(1+2+3+4)+(                                  )
……
(2)歸納結論:
12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…+n
=1+0×1+2+1×2+3+2×3+…+n+(n一1)×n
=(                      ) +
=                      +                                 
=×                     
(3)實踐應用:
通過以上探究過程,我們就可以算出當n為100時,正方形網格中正方形的總個數是              

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011四川內江,加試5,12分)同學們,我們曾經研究過n×n的正方形網格,得到了網格中正方形的總數的表達式為12+22+32+…+n2.但n為100時,應如何計算正方形的具體個數呢?下面我們就一起來探究并解決這個問題.首先,通過探究我們已經知道0×1+1×2+2×3+…+(n—1)×n=n(n+1)(n—1)時,我們可以這樣做:
(1)觀察并猜想:
12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2)
12+22+32=(1+0)×1+(1+1)×2+(1+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+               
=1+0×1+2+1×2+3+2×3+                        
=(1+2+3+4)+(                                  )
……
(2)歸納結論:
12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…+n
=1+0×1+2+1×2+3+2×3+…+n+(n一1)×n
=(                      ) +
=                      +                                 
=×                     
(3)實踐應用:
通過以上探究過程,我們就可以算出當n為100時,正方形網格中正方形的總個數是              

查看答案和解析>>

科目:初中數學 來源:2012學年人教版中考數學第一輪復習有理數專項訓練 題型:解答題

(2011四川內江,加試5,12分)同學們,我們曾經研究過n×n的正方形網格,得到了網格中正方形的總數的表達式為12+22+32+…+n2.但n為100時,應如何計算正方形的具體個數呢?下面我們就一起來探究并解決這個問題.首先,通過探究我們已經知道0×1+1×2+2×3+…+(n—1)×n=n(n+1)(n—1)時,我們可以這樣做:
(1)觀察并猜想:
12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2)
12+22+32=(1+0)×1+(1+1)×2+(1+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+               
=1+0×1+2+1×2+3+2×3+                        
=(1+2+3+4)+(                                  )
……
(2)歸納結論:
12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…+n
=1+0×1+2+1×2+3+2×3+…+n+(n一1)×n
=(                      ) +
=                      +                                 
=×                     
(3)實踐應用:
通過以上探究過程,我們就可以算出當n為100時,正方形網格中正方形的總個數是              

查看答案和解析>>

科目:初中數學 來源:2012學年人教版中考數學第一輪復習有理數專項訓練 題型:解答題

(2011四川內江,加試5,12分)同學們,我們曾經研究過n×n的正方形網格,得到了網格中正方形的總數的表達式為12+22+32+…+n2.但n為100時,應如何計算正方形的具體個數呢?下面我們就一起來探究并解決這個問題.首先,通過探究我們已經知道0×1+1×2+2×3+…+(n—1)×n=n(n+1)(n—1)時,我們可以這樣做:
(1)觀察并猜想:
12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2)
12+22+32=(1+0)×1+(1+1)×2+(1+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+               
=1+0×1+2+1×2+3+2×3+                        
=(1+2+3+4)+(                                  )
……
(2)歸納結論:
12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…+n
=1+0×1+2+1×2+3+2×3+…+n+(n一1)×n
=(                      ) +
=                      +                                 
=×                     
(3)實踐應用:
通過以上探究過程,我們就可以算出當n為100時,正方形網格中正方形的總個數是              

查看答案和解析>>

同步練習冊答案