(1999•天津)如圖,已知AC切⊙O于C點,CP為⊙O的直徑,AB切⊙O于D與CP的延長線交于B點,若AC=PC.
求證:(1)BD=2BP;(2)PC=3BP.

【答案】分析:(1)連接OD,由于AB、AC都是切線,那么有∠BD=∠ACB=90°,而∠B=∠B,所以△BDO∽△BCA,再利用相似比,結合AC=PC=2OD,可得BD=BC①,而BD2=BP•BC②,②÷①即可求;
(2)由于BC=BP+PC,BD=2BP,BD2=BP•BC,所以有4BP2=BP(BP+PC),等式左右同除以BP,化簡后即可求證.
解答:證明:(1)連接OD,
∵D、C是切點,PC是直徑,OD是半徑,
∴∠BDO=∠ACB=90°,
又∠B=∠B,
∴△BDO∽△BCA,(1分)
,
∵AC=PC=2OD,
∴BD=BC.①(2分)
又BD2=BP•BC,②(3分)
②÷①,得BD=2BP.(4分)

(2)由BD2=BP•BC,
又∵BC=BP+PC,BD=2BP,
∴4BP2=BP(BP+PC),(5分)
∴4BP=BP+PC,
∴PC=3BP.(6分)
點評:本題利用了相似三角形的判定和性質、等式的性質、切割線定理等知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《圖形的相似》(02)(解析版) 題型:解答題

(1999•天津)如圖,已知AC切⊙O于C點,CP為⊙O的直徑,AB切⊙O于D與CP的延長線交于B點,若AC=PC.
求證:(1)BD=2BP;(2)PC=3BP.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《圓》(06)(解析版) 題型:解答題

(1999•天津)如圖,已知AC切⊙O于C點,CP為⊙O的直徑,AB切⊙O于D與CP的延長線交于B點,若AC=PC.
求證:(1)BD=2BP;(2)PC=3BP.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(1999•天津)如圖,直線l是一次函數(shù)y=kx+b的圖象,則其中( )

A.k>0,b>0
B.k>0,b<0
C.k<0,b<0
D.k<0,b>0

查看答案和解析>>

科目:初中數(shù)學 來源:1999年天津市中考數(shù)學試卷(解析版) 題型:解答題

(1999•天津)如圖,在一座山的山頂B處用高為1米的測傾器望地面C、D兩點,測得的俯角分別為60°和45°,若已知DC的長是20米,求山高BE.(結果可用根式表示)

查看答案和解析>>

同步練習冊答案