作業(yè)寶如圖,在△ABC中,AD為角平分線,CE⊥AD,F(xiàn)為BC中點(diǎn).
求證:EF=數(shù)學(xué)公式(AB-AC).

證明:如圖,延長(zhǎng)CE交AB于G,
∵AD為角平分線,
∴∠EAG=∠EAC,
∵CE⊥AD,
∴∠AEG=∠AEC=90°,
在△AGE和△ACE中,,
∴△AGE≌△ACE(ASA),
∴AG=AC,CE=GE,
又∵F為BC中點(diǎn),
∴EF是△BCG的中位線,
∴EF=BG=(AB-AG)=(AB-AC),
即EF=(AB-AC).
分析:延長(zhǎng)CE交AB于G,利用“角邊角”證明△AGE和△ACE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AG=AC,CE=GE,然后求出EF是△BCG的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半證明即可.
點(diǎn)評(píng):本題考查了三角形的中位線定理,全等三角形的判定與性質(zhì),作輔助線構(gòu)造出全等三角形和EF所在是三角形是解題的關(guān)鍵,也是本題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案