【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(100),點(diǎn)C為平面上一動(dòng)點(diǎn),連接CA,CB,將線段CB繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到線段CD,當(dāng)AC4,線段AD的長(zhǎng)取最大值時(shí),點(diǎn)D的坐標(biāo)為_____

【答案】(4,6+4)

【解析】

TAAB,使得TA=AB.連接ADBT,BD.首先證明點(diǎn)D的運(yùn)動(dòng)軌跡是以T為圓心4為半徑的圓,推出當(dāng)點(diǎn)DAT的延長(zhǎng)線上時(shí),AD的值最大.

TAAB,使得TA=AB.連接AD,BT,BD

∵△ATB,△CDB都是等腰直角三角形,

BT=AB,BD=BC,∠ABT=CBD=45°

,∠ABC=TBD

∴△ABC∽△TBD,

,

A(40),B(10,0),AC=4

AT=AB=6,DT=4,

T(4,6),

∴點(diǎn)D的運(yùn)動(dòng)軌跡是以T為圓心4為半徑的圓,

∴當(dāng)點(diǎn)DAT的延長(zhǎng)線上時(shí),AD的值最大,最大值=6+4,

∴點(diǎn)D的坐標(biāo)為(46+4)

故答案為:(4,6+4)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)有一個(gè)可以自由轉(zhuǎn)動(dòng)的圓形轉(zhuǎn)盤(如圖).規(guī)定:顧客購(gòu)物100元以上可以獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),當(dāng)轉(zhuǎn)盤停止時(shí),指針落在哪一個(gè)區(qū)域就獲得相應(yīng)的獎(jiǎng)品(指針指向兩個(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形).下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù)n

100

150

200

500

800

1000

落在鉛筆的次數(shù)m

68

111

136

345

546

701

落在鉛筆的頻率

(結(jié)果保留小數(shù)點(diǎn)后兩位)

0.68

0.74

0.68

0.69

0.68

0.70

1)轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,獲得鉛筆的概率約為_______;(結(jié)果保留小數(shù)點(diǎn)后一位)

2)鉛筆每只0.5元,飲料每瓶3元,經(jīng)統(tǒng)計(jì)該商場(chǎng)每天約有4000名顧客參加抽獎(jiǎng)活動(dòng),請(qǐng)計(jì)算該商場(chǎng)每天需要支出的獎(jiǎng)品費(fèi)用;

3)在(2)的條件下,該商場(chǎng)想把每天支出的獎(jiǎng)品費(fèi)用控制在3000元左右,則轉(zhuǎn)盤上“一瓶飲料”區(qū)域的圓心角應(yīng)調(diào)整為______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,于點(diǎn)D

1)如圖1,當(dāng)時(shí),若CE平分,交AB于點(diǎn)E,交BD于點(diǎn)F

①求證:是等腰三角形;

②求證:;

2)點(diǎn)EAB邊上,連接CE.若,在圖2中補(bǔ)全圖形,判斷之間的數(shù)量關(guān)系,寫出你的結(jié)論,并寫出求解關(guān)系的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)課上,老師對(duì)大學(xué)說:你任意想一個(gè)非零實(shí)數(shù),然后按下列步驟操作,我會(huì)直接說出你運(yùn)算的最后結(jié)果

操作步驟如下:

第一步:計(jì)算這個(gè)數(shù)與1的和的平方,減去這個(gè)數(shù)與1的差的平方

第二步:把第一步得到的數(shù)乘以25

第三步:把第二步得到的數(shù)除以你想的這個(gè)數(shù)

1)若小明同學(xué)心里想的是數(shù)9,請(qǐng)幫他計(jì)算出最后結(jié)果:

.

2)老師說:同學(xué)們,無論你們心里想的是什么非零實(shí)數(shù),按照以上步驟進(jìn)行操作,得到的最后結(jié)果都相等,小明同學(xué)想驗(yàn)證這個(gè)結(jié)論,于是,設(shè)心里想的數(shù)是aa0),請(qǐng)你幫小明完成這個(gè)驗(yàn)證過程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】423日是世界讀書日,某校為了解學(xué)生課外閱讀情況,抽樣調(diào)查了部分學(xué)生每周用于課外閱讀的時(shí)間,過程如下:

數(shù)據(jù)收集:從全校隨機(jī)抽取20名學(xué)生,進(jìn)行了每周用于課外閱讀時(shí)間的調(diào)查,數(shù)據(jù)如下(單位:)

30

60

81

50

40

110

130

146

90

100

60

81

120

140

70

81

10

20

100

81

整理數(shù)據(jù):按如下分段整理樣本數(shù)據(jù)并補(bǔ)全表格:

課外閱讀時(shí)間

等級(jí)

人數(shù)

3

8

分析數(shù)據(jù):補(bǔ)全下列表格中的統(tǒng)計(jì)量:

平均數(shù)

中位數(shù)

眾數(shù)

80

1        ,    ,    ;

2)用樣本中的統(tǒng)計(jì)量估計(jì)該校學(xué)生每周用于課外閱讀時(shí)間的情況等級(jí)為    

3)如果該,F(xiàn)有學(xué)生400人,估計(jì)等級(jí)為“”的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A,B-1,2)是一次函數(shù)與反比例函數(shù)

)圖象的兩個(gè)交點(diǎn),AC⊥x軸于C,BD⊥y軸于D

(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)大于反比例函數(shù)的值?

(2)求一次函數(shù)解析式及m的值;

(3)P是線段AB上的一點(diǎn),連接PC,PD,若△PCA△PDB面積相等,求點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)閱讀下列材料:

問題:如圖(1),一圓柱的高為5dm,底面半徑為5dmBC是底面直徑,求一只螞蟻從A點(diǎn)出發(fā)沿圓柱表面爬行到點(diǎn)C的最短路線.小明設(shè)計(jì)了兩條路線:

路線1:側(cè)面展開圖中的AC.如下圖(2)所示:

設(shè)路線1的長(zhǎng)度為,則

路線2:高線AB + 底面直徑BC.如上圖(1)所示:

設(shè)路線2的長(zhǎng)度為,則,

,

,

所以要選擇路線2較短.

1)小明對(duì)上述結(jié)論有些疑惑,于是他把條件改成:圓柱的底面半徑為1dm,高AB5dm”繼續(xù)按前面的路線進(jìn)行計(jì)算.請(qǐng)你幫小明完成下面的計(jì)算:

路線1___________________;

路線2__________

,

(><) 所以應(yīng)選擇路線_________(12)較短.

(2)請(qǐng)你幫小明繼續(xù)研究:在一般情況下,當(dāng)圓柱的底面半徑為r,高為h時(shí),應(yīng)如何選擇上面的兩條路線才能使螞蟻從點(diǎn)A出發(fā)沿圓柱表面爬行到C點(diǎn)的路線最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為二次函數(shù)的圖象的頂點(diǎn).

1)過點(diǎn)軸的垂線,垂足為點(diǎn),求線段的最小值;

2)設(shè)正比例函數(shù)與上述二次函數(shù)的圖象相交于點(diǎn),,當(dāng)時(shí),求,的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=kx+bx軸于點(diǎn)A(1,0) ,與雙曲線 交于點(diǎn)

1)求直線AB的解析式為____ ____________;

2)若 x 軸上存在動(dòng)點(diǎn) Mm0),過點(diǎn) M 且與 x 軸垂直的直線與直線AB交于點(diǎn)C,與雙曲線交于點(diǎn)D(C、D兩點(diǎn)不重合),當(dāng)BC >BD時(shí),寫出m的取值范圍_____________

查看答案和解析>>

同步練習(xí)冊(cè)答案