如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B和D
(1)求拋物線的解析式.
(2)如果點(diǎn)P由點(diǎn)A出發(fā)沿AB邊以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同
時(shí)點(diǎn)Q由點(diǎn)B出發(fā)沿BC邊以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)S=PQ2(cm2
①試求出S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍;
②當(dāng)S取時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
(3)在拋物線的對(duì)稱軸上求點(diǎn)M,使得M到D、A的距離之差最大,求出點(diǎn)M的坐標(biāo).

【答案】分析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標(biāo)代入即可;
(2)①由勾股定理即可求出,②假設(shè)存在點(diǎn)R,可構(gòu)成以P、B、R、Q為頂點(diǎn)的平行四邊形,求出P、Q的坐標(biāo),再分為兩種種情況:A、B、C即可根據(jù)平行四邊形的性質(zhì)求出R的坐標(biāo).
(3)A關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為B,過(guò)B、D的直線與拋物線的對(duì)稱軸的交點(diǎn)為所求M,求出直線BD的解析式,把拋物線的對(duì)稱軸x=1代入即可求出M的坐標(biāo).
解答:解:(1)設(shè)拋物線的解析式是y=ax2+bx+c,
∵正方形的邊長(zhǎng)2,
∴B的坐標(biāo)(2,-2)A點(diǎn)的坐標(biāo)是(0,-2),
把A(0,-2),B(2,-2),D(4,-)代入得:
解得a=,b=-,c=-2,
∴拋物線的解析式為:,
答:拋物線的解析式為:

(2)①由圖象知:PB=2-2t,BQ=t,
∴S=PQ2=PB2+BQ2
=(2-2t)2+t2,
即S=5t2-8t+4(0≤t≤1).
答:S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式是S=5t2-8t+4,t的取值范圍是0≤t≤1.
②解:假設(shè)存在點(diǎn)R,可構(gòu)成以P、B、R、Q為頂點(diǎn)的平行四邊形.
∵S=5t2-8t+4(0≤t≤1),
∴當(dāng)S=時(shí),5t2-8t+4=,得20t2-32t+11=0,
解得t=,t=(不合題意,舍去),
此時(shí)點(diǎn)P的坐標(biāo)為(1,-2),Q點(diǎn)的坐標(biāo)為(2,-),
若R點(diǎn)存在,分情況討論:
(i)假設(shè)R在BQ的右邊,如圖所示,這時(shí)QR=PB,RQ∥PB,
則R的橫坐標(biāo)為3,R的縱坐標(biāo)為-
即R(3,-),
代入,左右兩邊相等,
∴這時(shí)存在R(3,-)滿足題意;

(ii)假設(shè)R在QB的左邊時(shí),這時(shí)PR=QB,PR∥QB,
則R(1,-)代入,
左右不相等,∴R不在拋物線上.(1分)
綜上所述,存點(diǎn)一點(diǎn)R(3,-)滿足題意.
則存在,R點(diǎn)的坐標(biāo)是(3,-);

(3)如圖,M′B=M′A,
∵A關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為B,過(guò)B、D的直線與拋物線的對(duì)稱軸的交點(diǎn)為所求M,
理由是:∵M(jìn)A=MB,若M不為L(zhǎng)與DB的交點(diǎn),則三點(diǎn)B、M、D構(gòu)成三角形,
∴|MB|-|MD|<|DB|,
即交點(diǎn)時(shí)差為|DB|為最大,
設(shè)直線BD的解析式是y=kx+b,把B、D的坐標(biāo)代入得:,
解得:k=,b=-
∴y=x-,
拋物線的對(duì)稱軸是x=1,
把x=1代入得:y=-
∴M的坐標(biāo)為(1,-);
答:M的坐標(biāo)為(1,-).
點(diǎn)評(píng):本題主要考查了用待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式,勾股定理,平行四邊形的性質(zhì),二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征等知識(shí)點(diǎn),解此題的關(guān)鍵是綜合運(yùn)用這些知識(shí)進(jìn)行計(jì)算.此題綜合性強(qiáng),是一道難度較大的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y=
9x
的圖象在第一象限相精英家教網(wǎng)交于點(diǎn)A,過(guò)點(diǎn)A分別作x軸、y軸的垂線,垂足為點(diǎn)B、C.如果四邊形OBAC是正方形,求一次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(-2,0)和(2,0).月牙①繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到月牙②,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系中,一顆棋子從點(diǎn)P處開(kāi)始依次關(guān)于點(diǎn)A,B,C作循環(huán)對(duì)稱跳動(dòng),即第一次從點(diǎn)P跳到關(guān)于點(diǎn)A的對(duì)稱點(diǎn)M處,第二次從點(diǎn)M跳到關(guān)于點(diǎn)B的對(duì)稱點(diǎn)N處,第三次從點(diǎn)N跳到關(guān)于點(diǎn)C的對(duì)稱點(diǎn)處,…如此下去.
(1)在圖中標(biāo)出點(diǎn)M,N的位置,并分別寫(xiě)出點(diǎn)M,N的坐標(biāo):
 

(2)請(qǐng)你依次連接M、N和第三次跳后的點(diǎn),組成一個(gè)封閉的圖形,并計(jì)算這個(gè)圖形的面積;
(3)猜想一下,經(jīng)過(guò)第2009次跳動(dòng)之后,棋子將落到什么位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系xoy中,有一組對(duì)角線長(zhǎng)分別為1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其對(duì)角線OB1、B1B2、B2 B3依次放置在y軸上(相鄰頂點(diǎn)重合),依上述排列方式,對(duì)角線長(zhǎng)為n的第n個(gè)正方形的頂點(diǎn)An的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3(a≠0)經(jīng)過(guò)A(-1,0)、B(3,0)兩點(diǎn),拋物線與y軸交點(diǎn)為C,其頂點(diǎn)為D,連接BD,點(diǎn)P是線段BD上一個(gè)動(dòng)點(diǎn)(不與B、D重合),過(guò)點(diǎn)P作y軸的垂線,垂足為E,連接精英家教網(wǎng)BE.
(1)求拋物線的解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)如果P點(diǎn)的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫(xiě)出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當(dāng)s取得最大值時(shí),過(guò)點(diǎn)P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P',請(qǐng)直接寫(xiě)出P'點(diǎn)坐標(biāo),并判斷點(diǎn)P'是否在該拋物線上.

查看答案和解析>>

同步練習(xí)冊(cè)答案