【題目】某商品的進價為每件30元,現(xiàn)在的售價為每件40元,每星期可賣出200件.市場調(diào)查反映:如果每件的售價每漲1元,那么每星期少賣10件.設每件漲價x元,每星期的銷量為y件.
(1)求y與x的函數(shù)關(guān)系式;
(2)如何定價才能使每星期的利潤最大且每星期的銷量較大?每星期的最大利潤是多少?
【答案】(1);(2)定價為45元/件時能使每星期的利潤最大且每星期的銷量較大,每星期的最大利潤是2250元.
【解析】
(1)根據(jù)每星期銷量=200-10×每件漲錢數(shù)列式即可;
(2)設每星期的利潤為w元,利用總利潤=每件利潤×銷量列出相應的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)解答.
解:(1)由題意,得;
(2)設每星期的利潤為w元,
則,
∵-10<0,∴當x=5時,w最大=2250元,此時商品的定價為45元/件,每星期的銷量是150件,
故定價為45元/件時能使每星期的利潤最大且每星期的銷量較大,每星期的最大利潤是2250元.
科目:初中數(shù)學 來源: 題型:
【題目】某射擊隊準備從甲、乙兩名隊員中選取一名隊員代表該隊參加比賽,特為甲、乙兩名隊員舉行了一次選拔賽,要求這兩名隊員各射擊10次.比賽結(jié)束后,根據(jù)比賽成績情況,將甲、乙兩名隊員的比賽成績制成了如下的統(tǒng)計圖(表):
甲隊員的成績統(tǒng)計表
成績(單位:環(huán)) | 7 | 8 | 9 | 10 |
次數(shù)(單位:次) | 5 | 1 | 2 | 2 |
(1)在圖1中,求“8環(huán)”所在扇形的圓心角的度數(shù);
(2)經(jīng)過整理,得到的分析數(shù)據(jù)如表,求表中的a、b、c的值.
隊員 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 8 | 7.5 | 7 | c |
乙 | a | b | 7 | 1 |
(3)根據(jù)甲、乙兩名隊員的成績情況,該射擊隊準備選派乙參加比賽,請你寫出一條射擊隊選派乙的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠ABC=35°,E是BC邊上一點且AE=CE,D是
BC邊上的中點,連接AD,AE.
(1)求∠DAE的度數(shù);
(2)若BD上存在點F,且∠AFE=∠AEF,求證:BF=CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點.
(1)求反比例函數(shù)的解析式;
(2)求的面積;
(3)如圖寫出反比例函數(shù)值大于一次函數(shù)值的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=.將△BDE繞點B逆時針方向旋轉(zhuǎn)后得△BD'E',當點E'恰好落在線段AD'上時,則CE'=_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點M、N分別在AB、BC上,AB=4,AM=1,BN=.
(1)求證:ΔADM∽ΔBMN;
(2)求∠DMN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場經(jīng)銷的太陽路燈,標價為4000元/個,促銷活動期間,其優(yōu)惠方法如下:
A.一次性購買數(shù)量不超過80個,按標價收費;
B.一次性購買數(shù)量超過80個,每多買一個,所購路燈每個可降價8元,但單價最低不能低于3200元/個.
(1)購買80個這樣的路燈,應需付款_________________元.
(2)若一顧客一次性購買這樣的路燈用去516000元,則該顧客實際購買了多少個這樣的路燈.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB、DC分別表示甲、乙兩建筑物的高,AB⊥BC,DC⊥BC,從B點測得D點的仰角α為60°從A點測得D點的仰角β為30°,已知甲建筑物高AB=36米.
(1)求乙建筑物的高DC;
(2)求甲、乙兩建筑物之間的距離BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店從廠家以21元的價格購進一批商品,該商品可以自行定價,若每件商品售價為元,則可賣出(350-10)件,但物價局限定每件商品加價不能超過進價的20%,商店計劃要賺400元,需要賣出多少件商品?每件商品應售多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com