(1)解法一:連接AC
∵DE為⊙A的直徑,DE⊥BC
∴BO=CO
![](http://thumb.zyjl.cn/pic2/upload/papers/20140826/201408260048456619800.png)
∵D(0,3),E(0,-1)
∴DE=|3-(-1)|=4,OE=1
∴AO=1,AC=
DE=2
在Rt△AOC中,AC
2=AO
2+OC
2
∴OC=
∴C(,0),B(,0)
設(shè)經(jīng)過B、E、C三點(diǎn)的拋物線的解析式為
y=a(x-)(x+),
則-1=a(0-
)(0+
)
解得a=
∴y=
(x-
)(x+
)=
x
2-1(2分).
解法二:∵DE為⊙A的直徑,DE⊥BC
∴BO=CO
∴OC
2=OD•OE
∵D(0,3),E(0,-1)
∴DO=3,OE=1
∴OC2=3×1=3
∴OC=
∴C(
,0),B(-
,0)
以下同解法一;
(2)解法一:過點(diǎn)P作PF⊥y軸于F,過點(diǎn)Q作QN⊥y軸于N
∴∠PFA=∠QNA=90°,F(xiàn)點(diǎn)的縱坐標(biāo)為t
N點(diǎn)的縱坐標(biāo)為y
∵∠PAF=∠QAN,PA=QA
![](http://thumb.zyjl.cn/pic2/upload/papers/20140826/2014082600484650310600.png)
∴△PFA≌△QNA
∴FA=NA
∵AO=1
∴A(0,1)
∴|t-1|=|1-y|
∵動(dòng)切線PM經(jīng)過第一、二、三象限
觀察圖形可得1<t<3,-1<y<1.
∴t-1=1-y.
即y=-t+2.
∴y關(guān)于t的函數(shù)關(guān)系式為y=-t+2(1<t<3)(5分)
解法二:(i)當(dāng)經(jīng)過一、二、三象限的切線PM運(yùn)動(dòng)到使得Q點(diǎn)與C點(diǎn)重合時(shí),y=0
連接PB
∵PC是直徑
![](http://thumb.zyjl.cn/pic2/upload/papers/20140826/2014082600484675312229.png)
∴∠PBC=90°
∴PB⊥x軸,
∴PB=t.
∵PA=AC,BO=OC,AO=1,
∴PB=2AO=2,
∴t=2.
即t=2時(shí),y=0.
(ii)當(dāng)經(jīng)過一、二、三象限的切線
PM運(yùn)動(dòng)使得Q點(diǎn)在x軸上方時(shí),y>0
觀察圖形可得1<t<2
過P作PS⊥x軸于S,過Q作QT⊥x軸于T
![](http://thumb.zyjl.cn/pic2/upload/papers/20140826/2014082600484692412120.png)
則PS
∥AO
∥QT
∵點(diǎn)A為線段PQ的中點(diǎn)
∴點(diǎn)O為線段ST的中點(diǎn)
∴AO為梯形QTSP的中位線
∴AO=
∴1=
∴y=-t+2.
∴y=-t+2(1<t<2).
(iii)當(dāng)經(jīng)過一、二、三象限的切線PM運(yùn)動(dòng)使得Q點(diǎn)在x軸下方時(shí),y<0,觀察圖形可得2<t<3
過P作PS⊥x軸于S,過Q作QT⊥x軸于T,設(shè)PQ交x軸于R
則QT
∥PS
∴△QRT
∽△PRS
∴
=設(shè)AR=m,則
=&&(1)
又∵AO⊥x軸,
∴AO
∥PS
∴△ROA
∽△RSP
∴
=∴
=&&(2)
由(1)、(2)得y=-t+2
∴y=-t+2(2<t<3)
綜上所述:y與t的函數(shù)關(guān)系式為y=-t+2(1<t<3)(5分)
(3)解法一:當(dāng)y=0時(shí),Q點(diǎn)與C點(diǎn)重合,連接PB
∵PC為⊙A的直徑
∴∠PBC=90°
即PB⊥x軸
∴s=-
將y=0代入y=-t+2(1<t<3),得0=-t+2
∴t=2∴P(-
,2)
設(shè)切線PM與y軸交于點(diǎn)I,則AP⊥PI
∴∠API=9
![](http://thumb.zyjl.cn/pic2/upload/papers/20140826/2014082600485534816765.png)
0°
在△API與△AOC中
∵∠API=∠AOC=90°,∠PAI=∠OAC
∴△API
∽△AOC
∴
=∴I點(diǎn)坐標(biāo)為(0,5)
設(shè)切線PM的解析式為y=kx+5(k≠0),
∵P點(diǎn)的坐標(biāo)為
(-,2),
∴2=-
3 k+5.
解得k=
,
∴切線PM的解析式為y=
x+5(7分)
設(shè)切線PM與拋物線y=
x
2-1交于G、H兩點(diǎn)
由
可得x
1=
,x2=因此,G、H的橫坐標(biāo)分別為
、根據(jù)圖象可得拋物線在切線PM下方的點(diǎn)的橫坐標(biāo)x的取值范圍是
<x<(9分)
解法二:同(3)解法一
可得P(-
,2)
∵直線PM為⊙A的切線,PC為⊙A的直徑
∴PC⊥PM
在Rt△CPM與Rt△CBP中
cos∠PCM=
=∵CB=2
,PC=4
∴CM=
==設(shè)M點(diǎn)的坐標(biāo)為(m,0),
則CM=
-m=
∴m=-
.
即M(-
,0).
設(shè)切線PM的解析式為y=kx+b(k≠0),
得
| 0=-5
|
|
|