【題目】如圖,AB=AC,∠BAC=90°,∠1=∠2,CEBE.求證:BD=2CE.

【答案】見解析.

【解析】

延長CE、BA交于F點,然后證明△BFC是等腰三角形,再根據(jù)等腰三角形的性質(zhì)可得CE=CF,然后在證明△ADB≌△AFC可得BD=FC,進而證出BD=2CE

延長CEBA交于F點,如圖,


BEEC
∴∠BEF=CEB=90°
BD平分∠ABC,
∴∠1=2,
∴∠F=BCF,
BF=BC,
BECF
CE=CF,
∵△ABC中,AC=AB,∠A=90°
∴∠CBA=45°,
∴∠F=180-45°÷2=67.5°,∠FBE=22.5°,
∴∠ADB=67.5°,
∵在ADBAFC中,

,
∴△ADB≌△AFCAAS),
BD=FC,
BD=2CE

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOC是直角,OD平分∠AOC,∠BOC60° 求:

1)∠AOD的度數(shù);

2)∠AOB的度數(shù);

3)∠DOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地區(qū)教育部門為了解初中數(shù)學課堂中學生參與情況,并按“主動質(zhì)疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中的信息解答下列問題:

(1)本次抽查的樣本容量是 ;

(2)在扇形統(tǒng)計圖中,“主動質(zhì)疑”對應的圓心角為 度;

(3)將條形統(tǒng)計圖補充完整;

(4)如果該地區(qū)初中學生共有60000名,那么在課堂中能獨立思考的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于三個數(shù)、,用表示這三個數(shù)的中位數(shù),用表示這三個數(shù)中最大數(shù),例如:,.

解決問題:

(1)填空: ,如果,則的取值范圍為 ;

(2)如果,求的值;

(3)如果,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為αβ,且tanα=6,tanβ=,求燈桿AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,已知△ABC為直角三角形,∠A90°,若沿圖中虛線剪去∠A,則∠1+∠2等于(  )

A90° B135° C270° D315°

(2)如圖②,已知△ABC中,∠A40°,剪去∠A后成四邊形,則∠1+∠2=________°;

(3)根據(jù)(1)與(2)的求解過程,請你歸納猜想∠1+∠2與∠A的關(guān)系是______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以RtABC的直角邊AB為直徑作⊙O交斜邊AC于點D,過圓心OOEAC,交BC于點E,連接DE

(1)判斷DE與⊙O的位置關(guān)系并說明理由;

(2)求證:2DE2=CDOE;

(3)若tanC=,DE=,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,,點Cx軸正半軸上一動點,過點Ay軸于點E

如圖,若點C的坐標為,試求點E的坐標;

如圖,若點Cx軸正半軸上運動,且, 其它條件不變,連接DO,求證:OD平分

若點Cx軸正半軸上運動,當時,求的度數(shù).

查看答案和解析>>

同步練習冊答案