【題目】如圖,邊長為24的等邊三角形ABC中,M是高CH所在直線上的一個動點,連結(jié)MB,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連結(jié)HN.則在點M運動過程中,線段HN長度的最小值是( 。
A. 12B. 6C. 3D. 1
【答案】B
【解析】
取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BD=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.
如圖,取BC的中點G,連接MG,
∵旋轉(zhuǎn)角為60°,
∴∠MBH+∠HBN=60°,
又∵∠MBH+∠MBC=∠ABC=60°,
∴∠HBN=∠GBM,
∵CH是等邊△ABC的對稱軸,
∴HB=AB,
∴HB=BG,
又∵MB旋轉(zhuǎn)到BN,
∴BM=BN,
在△MBG和△NBH中,
,
∴△MBG≌△NBH(SAS),
∴MG=NH,
根據(jù)垂線段最短,當MG⊥CH時,MG最短,即HN最短,
此時∠BCH=×60°=30°,CG=AB=×24=12,
∴MG=CG=×12=6,
∴HN=6,
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在正方形網(wǎng)格上有6個三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②~⑥中與①相似的是( )
A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉(zhuǎn)過程中,當∠OAG′是直角時,求α的度數(shù);
②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC的中點,DE⊥AB,DF⊥AC,垂足分別是E、F,BE=CF.
(1)圖中共有_________對全等三角形.
(2)求證:AD是△ABC的角平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點,與軸交于點,過點作軸,交拋物線于點,并過點作軸,垂足為.拋物線和反比例函數(shù)的圖象都經(jīng)過點,四邊形的面積是.
求反比例函數(shù)、二次函數(shù)的解析式及拋物線的對稱軸;
如圖,點從點出發(fā)以每秒個單位的速度沿線段向點運動,點從點出發(fā)以相同的速度沿線段img src="http://thumb.zyjl.cn/questionBank/Upload/2019/05/12/08/1a8f9afd/SYS201905120854095644903087_ST/SYS201905120854095644903087_ST.023.png" width="24" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />向點運動,其中一個動點到達端點時,另一個也隨之停止運動.設運動時間為秒.
①當為何值時,四邊形為等腰梯形;
②設與對稱軸的交點為,過點作軸的平行線交于點,設四邊形的面積為,求面積關于時間的函數(shù)解析式,并指出的取值范圍;當為何值時,有最大值或最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知m,n(m<n)是關于x的方程(x–a)(x–b)=2的兩根,若a<b,則下列判斷正確的是
A. a<m<b<n B. m<a<n<b
C. a<m<n<d D. m<a<b<n
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是雙曲線y=上一點,過A作AB∥x軸,交直線y=﹣x于點B,點D是x軸上一點,連接BD交雙曲線于點C,連接AD,若BC:CD=3:2,△ABD的面積為,tan∠ABD=,則k的值為( 。
A. ﹣2 B. ﹣3 C. ﹣ D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com