【題目】如圖,二次函數(shù)圖象的頂點(diǎn)為D,其圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為、3,與y軸負(fù)半軸交于點(diǎn)C,在下面四個(gè)結(jié)論中:

;②;只有當(dāng)時(shí),是等腰直角三角形;其中正確的結(jié)論是__________請(qǐng)把正確結(jié)論的序號(hào)都填上

【答案】①②③

【解析】分析:先根據(jù)圖象與x軸的交點(diǎn)A,B的橫坐標(biāo)分別為1,3,確定出AB的長(zhǎng)及對(duì)稱軸,再由拋物線的開(kāi)口方向判斷a0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c0的關(guān)系,然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.

詳解:①∵圖象與x軸的交點(diǎn)A,B的橫坐標(biāo)分別為1,3,

AB=4,

∴對(duì)稱軸

2a+b=0.故①正確;

②∵A點(diǎn)坐標(biāo)為(1,0),

ab+c=0,而b=2a,

a+2a+c=0,即c=3a.故②正確;

③要使ABD為等腰直角三角形,必須保證Dx軸的距離等于AB長(zhǎng)的一半;

Dx軸的距離就是當(dāng)x=1時(shí)y的值的絕對(duì)值。

當(dāng)x=1時(shí),y=a+b+c,

|a+b+c|=2,

∵當(dāng)x=1時(shí)y<0,

a+b+c=2,

又∵圖象與x軸的交點(diǎn)A,B的橫坐標(biāo)分別為1,3,

∴當(dāng)x=1時(shí)y=0,即ab+c=0,

x=3時(shí)y=0,即9a+3b+c=0,

解這三個(gè)方程可得: 故③正確;

故答案為:①②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分別為AB、BC邊上的動(dòng)點(diǎn),點(diǎn)P從點(diǎn)A開(kāi)始沿AB方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開(kāi)始B→C方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā);設(shè)出發(fā)的時(shí)間為t秒.

1)出發(fā)2秒后,求PQ的長(zhǎng);

2)從出發(fā)幾秒鐘后,△PQB能形成等腰三角形?

3)在運(yùn)動(dòng)過(guò)程中,直線PQ能否把原三角形周長(zhǎng)分成相等的兩部分?若能夠,請(qǐng)求出運(yùn)動(dòng)時(shí)間;若不能夠,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在解決數(shù)學(xué)問(wèn)題的過(guò)程中,我們常用到“分類(lèi)討論”的數(shù)學(xué)思想,下面是運(yùn)用分類(lèi)討論的數(shù)學(xué)思想解決問(wèn)題的過(guò)程,請(qǐng)仔細(xì)閱讀,并解答題目后提出的“探究”.

(提出問(wèn)題)三個(gè)有理數(shù)a,b,c,滿足,求的值.

(解決問(wèn)題).

解:由題意得,ab,c三個(gè)有理數(shù)都為正數(shù)或其中一個(gè)為正數(shù),另兩個(gè)為負(fù)數(shù).

①當(dāng)a,bc都是正數(shù),即,時(shí),則(備注:一個(gè)非零數(shù)除以它本身等于1,如,則,

②當(dāng)a,b,c有一個(gè)為正數(shù),另兩個(gè)為負(fù)數(shù)時(shí),設(shè),,

.

(備注:一個(gè)非零數(shù)除以它的相反數(shù)等于-1,如:,則.

所以的值為3或一1.

(探究)請(qǐng)根據(jù)上面的解題思路解答下面的問(wèn)題:

1)三個(gè)有理數(shù)a,bc滿足,求的值;

2)已知,,且,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖中的虛線網(wǎng)格我們稱為正三角形網(wǎng)格,它的每一個(gè)小三角形都是邊長(zhǎng)為 1個(gè)單位長(zhǎng)度的正三角形,這樣的三角形稱為單位正三角形.

1)圖①中,已知四邊形 ABCD 是平行四邊形,求ABC 的面積和對(duì)角線 AC 的長(zhǎng);

2)圖②中,求四邊形 EFGH 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃投入50萬(wàn)元,開(kāi)發(fā)并生產(chǎn)甲乙兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查預(yù)計(jì)甲產(chǎn)品的年獲利y1(萬(wàn)元)與投入資金x(萬(wàn)元)成正比例,乙產(chǎn)品的年獲利y2(萬(wàn)元)與投入資金x(萬(wàn)元)的平方成正比例,設(shè)該公司投入乙產(chǎn)品x(萬(wàn)元),兩種產(chǎn)品的年總獲利為y萬(wàn)元(x≥0),得到了表中的數(shù)據(jù).

x(萬(wàn)元)

20

30

y(萬(wàn)元)

10

13

(1)求yx的函數(shù)關(guān)系式;

(2)該公司至少可獲得多少利潤(rùn)?請(qǐng)你利用所學(xué)的數(shù)學(xué)知識(shí)對(duì)該公司投入資金的分配提出合理化建

議,使他能獲得最大利潤(rùn),并求出最大利潤(rùn)是多少?

(3)若從年總利潤(rùn)扣除投入乙產(chǎn)品資金的a倍(a≤1)后,剩余利潤(rùn)隨x增大而減小,求a的取值

范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班將買(mǎi)一些乒乓球和乒乓球拍,現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍.乒乓球拍每副定價(jià)30元,乒乓球每盒定價(jià)5元,經(jīng)洽談后,甲店每買(mǎi)一副球拍贈(zèng)一盒乒乓球,乙店全部按定價(jià)的9折優(yōu)惠.該班需球拍5副,乒乓球若干盒(不小于5盒).請(qǐng)解答下列問(wèn)題:

(1)如果購(gòu)買(mǎi)乒乓球不小于5)盒,則在甲店購(gòu)買(mǎi)需付款 元,在乙店購(gòu)買(mǎi)需付款 元。(用的代數(shù)式表示)

(2)當(dāng)購(gòu)買(mǎi)乒乓球多少盒時(shí),在兩店購(gòu)買(mǎi)付款一樣?

(3)如果給你450元,讓你選擇一家商店去辦這件事,你打算去哪家商店購(gòu)買(mǎi)?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度沿折線AC→CB→BA運(yùn)動(dòng),最終回到點(diǎn)A,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為xs),線段AP的長(zhǎng)度為ycm),則能夠反映yx之間函數(shù)關(guān)系的圖象大致是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程

12x3x+2)=5x2x1);

2)﹣+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀資料,解決問(wèn)題.

人教版《數(shù)學(xué)九年級(jí)(下冊(cè))》的頁(yè)有這樣一個(gè)思考問(wèn)題:

問(wèn)題:如圖,在中,,于點(diǎn),,如果通過(guò)“相似的定義”證明?

根據(jù)“兩直線平行,同位角相等”容易得出三對(duì)對(duì)應(yīng)角分別相等,再根據(jù)“平行線分線段成比例”的基本事實(shí),容易得出,所以這個(gè)問(wèn)題的核心時(shí)如何證明“”.

證明思路:過(guò)點(diǎn)于點(diǎn),構(gòu)造平行四邊形,得到,從而將比例式中的,轉(zhuǎn)化為共線的兩條線段,同時(shí)也構(gòu)造了基本圖形“”,得到,從而得證.

解決問(wèn)題:

)①類(lèi)比資料中的證明思路,請(qǐng)你證明“三角形內(nèi)角平分線定理”.

三角形內(nèi)角平分線定理:三角形的內(nèi)角平分線分對(duì)邊所得的兩條線段和這個(gè)角的兩邊對(duì)應(yīng)成比例.

已知:如圖,中,是角平分線.

求證:

②運(yùn)用“三角形內(nèi)角平分線定理”填空:

已知:如圖,中,是角平分線,,,則__________.

)我們知道,如果兩個(gè)三角形有相同的高或者相等的高,那么它們面積的比就等于底的比.

請(qǐng)你通過(guò)研究面積的比來(lái)證明三角形內(nèi)角平分線定理.

已知:如圖,中,是角平分線.

求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案