【題目】如圖①,②,在平面直角坐標(biāo)系xoy中,點A的坐標(biāo)為(4,0),以點A為圓心,4為半徑的圓與x軸交于O,B兩點,OC為弦, , P是x軸上的一動點,連結(jié)CP。
(1)求的度數(shù);
(2)如圖①,當(dāng)CP與⊙A相切時,求PO的長;
(3)如圖②,當(dāng)點P在直徑OB上時,CP的延長線與⊙A相交于點Q,問PO為何值時,是等腰三角形?
【答案】(1)60°.(2)4.(3)2或2+2.
【解析】
試題(1)OA=AC首先三角形OAC是個等腰三角形,因為∠AOC=60°,三角形AOC是個等邊三角形,因此∠OAC=60°;
(2)如果PC與圓A相切,那么AC⊥PC,在直角三角形APC中,有∠PCA的度數(shù),有A點的坐標(biāo)也就有了AC的長,可根據(jù)余弦函數(shù)求出PA的長,然后由PO=PA-OA得出OP的值.
(3)本題分兩種情況:
①以O為頂點,OC,OQ為腰.那么可過C作x軸的垂線,交圓于Q,此時三角形OCQ就是此類情況所說的等腰三角形;那么此時PO可在直角三角形OCP中,根據(jù)∠COA的度數(shù),和OC即半徑的長求出PO.
②以Q為頂點,QC,QD為腰,那么可做OC的垂直平分線交圓于Q,則這條線必過圓心,如果設(shè)垂直平分線交OC于D的話,可在直角三角形AOQ中根據(jù)∠QAE的度數(shù)和半徑的長求出Q的坐標(biāo);然后用待定系數(shù)法求出CQ所在直線的解析式,得出這條直線與x軸的交點,也就求出了PO的值.
試題解析:(1)∵∠AOC=60°,AO=AC,
∴△AOC是等邊三角形,
∴∠OAC=60°.
(2)∵CP與A相切,
∴∠ACP=90°,
∴∠APC=90°-∠OAC=30°;
又∵A(4,0),
∴AC=AO=4,
∴PA=2AC=8,
∴PO=PA-OA=8-4=4.
(3)①過點C作CP1⊥OB,垂足為P1,延長CP1交⊙A于Q1;
∵OA是半徑,
∴ 弧OC=弧OQ1,
∴OC=OQ1,
∴△OCQ1是等腰三角形;
又∵△AOC是等邊三角形,
∴P1O=OA=2;
②過A作AD⊥OC,垂足為D,延長DA交⊙A于Q2,CQ2與x軸交于P2;
∵A是圓心,
∴DQ2是OC的垂直平分線,
∴CQ2=OQ2,
∴△OCQ2是等腰三角形;
過點Q2作Q2E⊥x軸于E,
在Rt△AQ2E中,
∵∠Q2AE=∠OAD=∠OAC=30°,
∴Q2E=AQ2=2,AE=2,
∴點Q2的坐標(biāo)(4+2,-2);
在Rt△COP1中,
∵P1O=2,∠AOC=60°,
∴CP1=2,
∴C點坐標(biāo)(2,2);
設(shè)直線CQ2的關(guān)系式為y=kx+b,則
,解得,
∴y=-x+2+2;
當(dāng)y=0時,x=2+2,
∴P2O=2+2.
考點: 1.切線的性質(zhì);2.等腰三角形的性質(zhì);3.等邊三角形的性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為弓形AB的弦,AB=2,弓形所在圓⊙O的半徑為2,點P為弧AB上動點,點I為△PAB的內(nèi)心,當(dāng)點P從點A向點B運動時,點I移動的路徑長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一張長方形卡片ABCD放在每格寬度為12mm的橫格紙中,恰好四個頂點都在橫格線上.已知α=36°,求長方形卡片的周長.
(精確到1mm,參考數(shù)據(jù):sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標(biāo);
(3)在對稱軸上是否存在一點M,使△ANM的周長最。舸嬖,請求出M點的坐標(biāo)和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年東京奧運會的比賽門票開始接受公眾預(yù)訂.下表為奧運會官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票的人民幣價格,球迷小李用12000元做為預(yù)訂下表中比賽項目門票的資金.
比賽項目 | 票價(元/場) |
男籃 | 1000 |
足球 | 800 |
乒乓球 | 500 |
(1)若全部資金用來預(yù)訂男籃門票和乒乓球門票共15張,問男籃門票和乒乓球門票各訂多少張?
(2)若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,這個球迷想預(yù)定上表中三種球類門票,其中足球門票與乒乓球門票數(shù)相同,且足球門票的費用不超過男籃門票的費用,問可以預(yù)訂這三種球類門票各多少張?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,點E,F分別在邊AD,CD上,且EF⊥BE,EF=BE,△DEF的外接圓⊙O恰好切BC于點G,BF交⊙O于點H,連結(jié)DH.若AB=8,則DH=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如圖所示(收支差額車票收入支出費用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(Ⅰ)不改變支出費用,提高車票價格;建議(Ⅱ)不改變車票價格,減少支出費用. 下面給出的四個圖形中,實線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則( )
④ ③ ② ①
A. ①反映了建議(Ⅰ),③反映了建議(Ⅱ) B. ②反映了建議(Ⅰ),④反映了建議(Ⅱ)
C. ①反映了建議(Ⅱ),③反映了建議(Ⅰ) D. ②反映了建議(Ⅱ),④反映了建議(Ⅰ)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市智慧閱讀活動正如火如茶地進行.某班學(xué)習(xí)委員為了解11月份全班同學(xué)課外閱讀的情況,調(diào)查了全班同學(xué)11月份讀書的冊數(shù),并根據(jù)調(diào)查結(jié)果繪制了如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖:
(1)扇形統(tǒng)計圖中“3冊”部分所對應(yīng)的圓心角的度數(shù)是 ,并把條形統(tǒng)計圖補充完整;
(2)該班的學(xué)習(xí)委員11月份的讀書冊數(shù)為4冊,若該班的班主任從11月份讀書4冊的學(xué)生中隨機抽取兩名同學(xué)參加學(xué)校舉行的知識競賽,請用列表法或畫樹狀圖求恰好有一名同學(xué)是學(xué)習(xí)委員的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋中裝有5個只有顏色不同的球,其中3個黃球,2個黑球.
(1)求從袋中同時摸出的兩個球都是黃球的概率;
(2)現(xiàn)將黑球和白球若干個(黑球個數(shù)是白球個數(shù)的2倍)放入袋中,攪勻后,若從袋中摸出一個球是黑球的概率是,求放入袋中的黑球的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com