【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長(zhǎng)線上截取CG=AB,連接AD、AG.
(1)求證:AD=AG;
(2)AD與AG的位置關(guān)系如何,請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)AD⊥AG,證明見(jiàn)解析.
【解析】試題分析:(1)由BE垂直于AC,CF垂直于AB,利用垂直的定義得∠HFB=∠HEC,由得對(duì)頂角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD與三角形ACG全等,由全等三角形的對(duì)應(yīng)邊相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代換可得出∠AED=∠GAD=90°,即AG與AD垂直.
試題解析:(1)∵BE⊥AC,CF⊥AB,
∴∠HFB=∠HEC=90°,
又∵∠BHF=∠CHE,
∴∠ABD=∠ACG,
在△ABD和△GCA中
,
∴△ABD≌△GCA(SAS),
∴AD=GA(全等三角形的對(duì)應(yīng)邊相等);
(2)位置關(guān)系是AD⊥GA,
理由為:∵△ABD≌△GCA,
∴∠ADB=∠GAC,
又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,
∴∠AED=∠GAD=90°,
∴AD⊥GA.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將點(diǎn)P(﹣2,1)先向左平移1個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度得到點(diǎn)P′,則點(diǎn)P′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我縣某樓盤準(zhǔn)備以每平方米6500元的均價(jià)對(duì)外銷售,由于國(guó)務(wù)院有關(guān)房地產(chǎn)的新政策出臺(tái)后,購(gòu)房者持幣觀望,為了加快資金周轉(zhuǎn),房地產(chǎn)開(kāi)發(fā)商對(duì)價(jià)格經(jīng)過(guò)兩次下調(diào)后,決定以每平方米5265元的均價(jià)開(kāi)盤銷售,則每次下調(diào)的百分率是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商家花費(fèi)1440元購(gòu)進(jìn)某種水果80千克,銷售中有10%的水果正常損耗,為了避免虧本,售價(jià)至少應(yīng)定為________元/千克.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖5,點(diǎn)P在正△ABC內(nèi)一點(diǎn),∠APB=125°, ∠BPC=100°,則以AP,BP,CP為邊長(zhǎng)的三角形各內(nèi)角的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知關(guān)于x的一元二次方程x2﹣2x﹣k=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( )
A. k≥1B. k>1C. k≥﹣1D. k>﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一個(gè)圖案進(jìn)行旋轉(zhuǎn)變換,選擇不同的旋轉(zhuǎn)中心、不同的,會(huì)有不同的效果.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com