【題目】如圖,三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過(guò)點(diǎn)B的直線折疊這個(gè)三角形,使點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,求△ADE的周長(zhǎng).

【答案】解:∵BC沿BD折疊點(diǎn)C落在AB邊上的點(diǎn)E處,
∴DE=CD,BE=BC,
∵AB=8cm,BC=6cm,
∴AE=AB﹣BE=AB﹣BC=8﹣6=2cm,
∴△ADE的周長(zhǎng)=AD+DE+AE,
=AD+CD+AE,
=AC+AE,
=5+2,
=7cm.
【解析】根據(jù)翻折變換的性質(zhì)可得DE=CD,BE=BC,然后求出AE,再根據(jù)三角形的周長(zhǎng)列式求解即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用翻折變換(折疊問(wèn)題)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 中,點(diǎn)在邊上, , ,垂足分別是、,12.

1平行嗎?為什么?

(2)若∠51°,54°,的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了深化課程改革,省實(shí)驗(yàn)積極開(kāi)展校本課程建設(shè),計(jì)劃成立“增量閱讀”、“趣味數(shù)學(xué)”、“音樂(lè)舞蹈”和“戲劇英語(yǔ)”等多個(gè)社團(tuán),要求每位學(xué)生都自主選擇其中一個(gè)社團(tuán),為此,隨機(jī)調(diào)查了初中部分學(xué)生選擇社團(tuán)的意向.并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表(不完整):

選擇意向

增量閱讀

趣味數(shù)學(xué)

音樂(lè)舞蹈

戲曲英語(yǔ)

其他

所占百分比

a

20%

b

10%

5%


根據(jù)統(tǒng)計(jì)圖表的信息,解答下列問(wèn)題:

(l)求本次抽樣調(diào)查的學(xué)生總?cè)藬?shù)及a、b的值:

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校共有5000名學(xué)生,試估計(jì)全校選擇“音樂(lè)舞蹈”社團(tuán)的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,銳角△ABC中,分別以AB、AC為邊向外作等邊△ABE和等邊△ACD,連接BD,CE,試猜想BD與CE的大小關(guān)系,并說(shuō)明理由.

【深入探究】

(2)如圖2,△ABC中,∠ABC=45°,AB=5cm,BC=3cm,分別以AB、AC為邊向外作正方形ABNE和正方形ACMD,連接BD,求BD的長(zhǎng).

(3)如圖3,在(2)的條件下,以AC為直角邊在線段AC的左側(cè)作等腰直角△ACD,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,BC=CD=8,過(guò)點(diǎn)B作EB⊥AB,交CD于點(diǎn)E.若DE=6,則AD的長(zhǎng)為(

A.6
B.8
C.9
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DEBCD,交ABE,FDE上,并且AF=CE

1)求證:四邊形ACEF是平行四邊形;

2)當(dāng)∠B滿足什么條件時(shí),四邊形ACEF是菱形?請(qǐng)回答并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按圖填空,并注明理由.

⑴完成正確的證明:如圖,已知AB∥CD,求證:∠BED=∠B+∠D

證明:過(guò)E點(diǎn)作EF∥AB(經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線與這條直線平行)

∴∠1= ( )

∵AB∥CD(已知)

∴EF∥CD(如果兩條直線與同一直線平行,那么它們也平行)

∴∠2= ( )

又∠BED=∠1+∠2

∴∠BED=∠B+∠D (等量代換).

⑵如圖,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過(guò)程填寫完整.

解:因?yàn)镋F∥AD(已知)

所以∠2=∠3.( )

又因?yàn)椤?=∠2,所以∠1=∠3.(等量代換)

所以AB∥ ( )

所以∠BAC+ =180°( ).

又因?yàn)椤螧AC=70°,所以∠AGD=110°.

圖⑴ 圖⑵

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若﹣2amb43a2bn+1是同類項(xiàng),則m+n的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的半徑是5cm,如果圓心到直線的距離是4cm,那么直線和圓的位置關(guān)系是( 。

A.相離B.相交C.相切D.內(nèi)含

查看答案和解析>>

同步練習(xí)冊(cè)答案