觀察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

按規(guī)律填空 
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
5
6
5
6

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100

若n為正整數(shù),試求:
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+
1
(n+3)(n+4)
+…+
1
(n+99)(n+100)
的值,并寫出求值過(guò)程.
分析:根據(jù)給出的算式可發(fā)現(xiàn)規(guī)律為:
1
n(n+1)
=
1
n
-
1
n+1
,按此規(guī)律將所給式子展開(kāi)化簡(jiǎn)即可求得.
解答:解:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
=
4
5
;
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+
1
5
-
1
6
=
5
6
;
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+…+
1
99
-
1
100
=
99
100
;
 
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+
1
(n+3)(n+4)
+…+
1
(n+99)(n+100)

=
1
n
-
1
n+1
+
1
n+1
-
1
n+2
+
1
n+2
-
1
n+3
+…+
1
n+99
-
1
n+100

=
100
n(n+100)

故答案為:
4
5
;
5
6
;
99
100
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)規(guī)律型題的掌握情況.注意此題的規(guī)律為:
1
n(n+1)
=
1
n
-
1
n+1
.掌握由特殊到一般的歸納方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察算式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,并以此規(guī)律計(jì)算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2007×2008

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

(1)按規(guī)律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
 

(2)若n為正整數(shù),化簡(jiǎn):
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+
1
(n+3)(n+4)
+…+
1
(n+99)(n+100)
,并寫出求解過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察算式:
1
1×2
=1
-
1
2
=
1
2
,
1
1×2
+
1
2×3
=1
-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1
-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4
;

(1)按規(guī)律填空:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5
;
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100
;
③如果n為正整數(shù),那么
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n×(n+1)
=
n
n+1
n
n+1

(2)計(jì)算(由此拓展寫出具體過(guò)程):
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
;
②1-
1
2
-
1
6
-
1
12
-…-
1
9900

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

按規(guī)律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5
;
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100
;
如果n為正整數(shù),那么
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n(n+1)
=
n
n+1
n
n+1

由此拓展寫出具體過(guò)程,
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101

查看答案和解析>>

同步練習(xí)冊(cè)答案