【題目】如圖,,,給出下列結(jié)論:①;②;③;④≌,其中正確的是( )
A. ①③④;B. ②③④;C. ①②④D. ①②③
【答案】C
【解析】
根據(jù)E=∠F=90°,∠B=∠C,AE=AF利用AAS可以證得△AEB≌△AFC,進(jìn)而證得△CAN≌△BAM,△CDM≌△BDN,從而作出判斷.
解:∵∠E=∠F=90°,∠B=∠C,AE=AF,
∴△AEB≌△AFC(AAS),
∴BE=CF,∠EAB=∠FAC,
∴∠1+∠CAB=∠2+∠CAB,
∴∠1=∠2,故①②正確;
∵△AEB≌△AFC,
∴AC=AB
又∵∠CAB=∠CAB,∠B=∠C
∴△CAN≌△BAM,故④正確;
∵△CAN≌△BAM,
∴AM=AN,
又∵AC=AB
∴CM=BN,
又∵∠B=∠C,∠CDM=∠BDN,
∴△CDM≌△BDN,
∴CD=BD,
而DN與BD不一定相等,因而CD=DN不一定成立,故③錯(cuò)誤.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P是反比例函數(shù)圖象上任意一點(diǎn),以P為圓心,PO為半徑的圓與x軸交于點(diǎn) A、與y軸交于點(diǎn)B,連接AB.
(1)求證:P為線段AB的中點(diǎn);
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積. 某學(xué)習(xí)小組經(jīng)過(guò)合作交流,給出了下面的解題思路,請(qǐng)你按照他們的解題思路,完成解答過(guò)程.
(1)作AD⊥BC于D,設(shè)BD=x,用含x的代數(shù)式表示CD,則CD=________;
(2)請(qǐng)根據(jù)勾股定理,利用AD作為“橋梁”建立方程,并求出x的值;
(3)利用勾股定理求出AD的長(zhǎng),再計(jì)算三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定x的一元一次方程ax=b的解為b﹣a,則稱(chēng)該方程是“差解方程”,例如:3x=4.5的解為4.5﹣3=1.5,則該方程3x=4.5就是“差解方程”,請(qǐng)根據(jù)上述規(guī)定解答下列問(wèn)題:
(1)已知關(guān)于x的一元一次方程4x=m是“差解方程”,則m=______.
(2)已知關(guān)于x的一元一次方程4x=ab+a是“差解方程”,它的解為a,則a+b=_____.
(3)已知關(guān)于x的一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,求代數(shù)式﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,在矩形ABCD中.點(diǎn)O在邊AB上,∠AOC=∠BOD.求證:AO=OB.
(2)如圖,AB是的直徑,PA與相切于點(diǎn)A,OP與相交于點(diǎn)C,連接CB,∠OPA=40°,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商場(chǎng)銷(xiāo)售甲、乙兩種商品,它們的進(jìn)價(jià)和售價(jià)如下表所示,
進(jìn)價(jià)(元) | 售價(jià)(元) | |
甲 | 15 | 20 |
乙 | 35 | 43 |
(1)若該商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品共 100 件,恰好用去 2700 元,求購(gòu)進(jìn)甲、乙兩種商品各多少件?
(2)該商場(chǎng)為使銷(xiāo)售甲、乙兩種商品共 100 件的總利潤(rùn)(利潤(rùn)=售價(jià)-進(jìn)價(jià))不少于750 元,且不超過(guò) 760 元,請(qǐng)你幫助該商場(chǎng)設(shè)計(jì)相應(yīng)的進(jìn)貨方案.
(3)若商場(chǎng)銷(xiāo)售甲、乙兩種商品的總利潤(rùn)(利潤(rùn)=售價(jià)-進(jìn)價(jià))是 103 元,求銷(xiāo)售甲、 乙兩種商品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是一個(gè)正方體的表面展開(kāi)圖,請(qǐng)回答下列問(wèn)題:
(1)與面B、面C相對(duì)的面分別是 和 ;
(2)若A=a3+a2b+3,B=﹣a2b+a3,C=a3﹣1,D=﹣(a2b+15),且相對(duì)兩個(gè)面所表示的代數(shù)式的和都相等,求E、F代表的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,圖2中,正方形ABCD的邊長(zhǎng)為6,點(diǎn)P從點(diǎn)B出發(fā)沿邊BC—CD以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)D勻速運(yùn)動(dòng),以BP為邊作等邊三角形BPQ,使點(diǎn)Q在正方形ABCD內(nèi)或邊上,當(dāng)點(diǎn)Q恰好運(yùn)動(dòng)到AD邊上時(shí),點(diǎn)P停止運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0)。
(1)當(dāng)t=2時(shí),點(diǎn)Q到BC的距離=_____;
(2)當(dāng)點(diǎn)P在BC邊上運(yùn)動(dòng)時(shí),求CQ的最小值及此時(shí)t的值;
(3)若點(diǎn)Q在AD邊上時(shí),如圖2,求出t的值;
(4)直接寫(xiě)出點(diǎn)Q運(yùn)動(dòng)路線的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.拋物線y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為C.
(1)求拋物線的解析式;
(2)點(diǎn)P是第一象限拋物線上的點(diǎn),連接OP交直線AB于點(diǎn)Q.設(shè)點(diǎn)P的橫坐標(biāo)為m,PQ與OQ的比值為y,求y與m的關(guān)系式,并求出PQ與OQ的比值的最大值;
(3)點(diǎn)D是拋物線對(duì)稱(chēng)軸上的一動(dòng)點(diǎn),連接OD、CD,設(shè)△ODC外接圓的圓心為M,當(dāng)sin∠ODC的值最大時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com