【題目】如圖,已知點(diǎn)A(4,0),O為坐標(biāo)原點(diǎn),P是線段OA上任意一點(diǎn)(不含端點(diǎn)O,A),過P、O兩點(diǎn)的二次函數(shù)y1和過P、A兩點(diǎn)的二次函數(shù)y2的圖象開口均向下,它們的頂點(diǎn)分別為B、C,射線OB與AC相交于點(diǎn)D.當(dāng)OD=AD=3時(shí),這兩個(gè)二次函數(shù)的最大值之和等于( )
A. B. C.3 D.4
【答案】A
【解析】
試題分析:此題考查了二次函數(shù)的最值,勾股定理,等腰三角形的性質(zhì)和判定的應(yīng)用,題目比較好,但是有一定的難度,屬于綜合性試題.
過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,則BF+CM是這兩個(gè)二次函數(shù)的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=,設(shè)P(2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,=,代入求出BF和CM,相加即可求出答案.
過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,
∵BF⊥OA,DE⊥OA,CM⊥OA,
∴BF∥DE∥CM.
∵OD=AD=3,DE⊥OA,
∴OE=EA=OA=2,
由勾股定理得:DE==5,設(shè)P(2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,
∵BF∥DE∥CM,
∴△OBF∽△ODE,△ACM∽△ADE,
∴=,=,
∵AM=PM=(OA-OP)=(4-2x)=2-x,
即=,=,
解得:BF=x,CM=-x,
∴BF+CM=.
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是菱形ABCD對角線AC與BD的交點(diǎn),CD=5cm,OD=3cm;過點(diǎn)C作CE∥DB,過點(diǎn)B作BE∥AC,CE與BE相交于點(diǎn)E.
(1)求OC的長;
(2)求四邊形OBEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛快遞車從長春出發(fā),走高速公路,途經(jīng)伊通,前往靖宇鎮(zhèn)送快遞,到達(dá)后卸貨和休息共用,然后開車按原速原路返回長春.這輛快遞車在長春到伊通、伊通到靖宇的路段上分別以不同的速度保持勻速前進(jìn),返回時(shí)也分別按原速返回.這輛快遞車距離長春的路程與它行駛的時(shí)間之間的函數(shù)圖象如圖所示.
(1)快遞車從伊通到長春的速度是__________,快遞車從長春到靖宇鎮(zhèn)往返一共用了__________;
(2)當(dāng)這輛快遞車在靖宇到伊通的路段上行駛時(shí),求與之間的函數(shù)關(guān)系式;
(3)如果這輛快遞車兩次經(jīng)過同一個(gè)服務(wù)區(qū)的時(shí)間間隔為,直接寫出這個(gè)服務(wù)區(qū)距離伊通的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F,AD交CE于H,
①求證:△BCE≌△ACD;
②求證:CF=CH;
③判斷△CFH的形狀并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“C919”大型客機(jī)首飛成功,激發(fā)了同學(xué)們對航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據(jù)不完整的航模飛機(jī)機(jī)翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請根據(jù)圖中數(shù)據(jù),求出線段BE和CD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結(jié)果保留小數(shù)點(diǎn)后一位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=mx+n與反比例函數(shù)y= ,其中mn<0,m、n均為常數(shù),它們在同一坐標(biāo)系中的圖象可以是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=CB,O是AB的中點(diǎn),CA與⊙O相切于點(diǎn)E,CO交⊙O于點(diǎn)D
(1)求證:CB是⊙O的切線;
(2)若∠ACB=80°,點(diǎn)P是⊙O上一個(gè)動點(diǎn)(不與D,E兩點(diǎn)重合),求∠DPE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下是八(1)班學(xué)生身高的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖,請回答以下問題.
八(1)班學(xué)生身高統(tǒng)計(jì)表
組別 | 身高(單位:米) | 人數(shù) |
第一組 | 1.85以上 | 1 |
第二組 | ||
第三組 | 19 | |
第四組 | ||
第五組 | 1.55以下 | 8 |
(1)求出統(tǒng)計(jì)表和統(tǒng)計(jì)圖缺的數(shù)據(jù).
(2)八(1)班學(xué)生身高這組數(shù)據(jù)的中位數(shù)落在第幾組?
(3)如果現(xiàn)在八(1)班學(xué)生的平均身高是1.63 ,已確定新學(xué)期班級轉(zhuǎn)來兩名新同學(xué),新同學(xué)的身高分別是1.54 和1.77 ,那么這組新數(shù)據(jù)的中位數(shù)落在第幾組?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com