【題目】如圖一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)A,B,與反比例函數(shù)圖象在第二象限交于點(diǎn)C(m,6),軸于點(diǎn)D,OA=OD.
(1)求m的值和一次函數(shù)的表達(dá)式;
(2)在X軸上求點(diǎn)P,使△CAP為等腰三角形(求出所有符合條件的點(diǎn))
【答案】
【1】
【2】 P(,0)
【解析】
解:∵點(diǎn)C(m,6)在反比例函數(shù)上
∴6m=-24,∴m=-4,
∴點(diǎn)C的坐標(biāo)是(-4,6),………………………………………………………1分
∵軸,∴D的坐標(biāo)是(-4,0),
又∵OA=OD,∴A的坐標(biāo)為(4,0),
將A(4,0),C(-4,6)代入
得,……………………………………………………………………2分
解得,………………………………………………………………………4分
∴一次函數(shù)的表達(dá)式為………………………………………………5分
⑵如圖:
①若以PA為底,則PD=AD=8,
∴OP=12,∴P(-12,0); ………………………………………………………6分
②若以PC為底,則AP=AC==10,
當(dāng)P在A左側(cè)時(shí),OP=6,∴P(-6,0);………………………………………7分
當(dāng)P在A右側(cè)時(shí),OP=14,∴P(14,0);………………………………………8分
③若以AC為底,設(shè)AP=PC=x,則DP=8-x,
∴,解得x=.
∴OP=-4=,∴P(,0)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式;
②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】全面兩孩政策實(shí)施后,甲,乙兩個(gè)家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:
(1)甲家庭已有一個(gè)男孩,準(zhǔn)備再生一個(gè)孩子,則第二個(gè)孩子是女孩的概率是 ;
(2)乙家庭沒有孩子,準(zhǔn)備生兩個(gè)孩子,求至少有一個(gè)孩子是女孩的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將矩形紙片ABCD折疊,使點(diǎn)B落在邊CD上的B′處,折痕為AE,過B'作B'P∥BC,交AE于點(diǎn)P,連接BP.已知BC=3,CB'=1,下列結(jié)論:①AB=5;②sin∠ABP=;③四邊形BEB′P為菱形;④S四邊形BEB'P﹣S△ECB'=1,其中正確的個(gè)數(shù)是( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中 過點(diǎn)A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點(diǎn),且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O為△ABC的外接圓,直線l與⊙O相切于點(diǎn)P,且∥BC.
(1) 連接PO,并延長(zhǎng)交⊙O于點(diǎn)D,連接AD.證明: AD平分∠BAC;
(2) 在(1)的條件下,AD交BC于點(diǎn)E,連接CD.若DE=2,AE=6.試求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知銳角△ABC內(nèi)接于⊙O,連接AO并延長(zhǎng)交BC于點(diǎn)D.
(1)求證:∠ACB+∠BAD=90°;
(2)過點(diǎn)D作DE⊥AB于E,若∠ADC=2∠ACB.求證:AC=2DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線 y=x2+bx+與 y軸交于點(diǎn) B,將該拋物線平移,使其經(jīng)過點(diǎn) A(-,0),且與 x軸交于另一點(diǎn) C.若 b≤﹣2,則線段 OB,OC的大小關(guān)系是( )
A. OB≤OC B. OB<OC C. OB≥OC D. OB>OC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠C=90°,cosB=0.6,把這個(gè)直角三角形繞頂點(diǎn)C旋轉(zhuǎn)后得到Rt△A'B'C,其中點(diǎn)B'正好落在AB上,A'B'與AC相交于點(diǎn)D,那么B′D:CD=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com