如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+4與x軸的一個(gè)交點(diǎn)為A(-2,0),與y軸的交點(diǎn)為C,對稱軸是x=3,對稱軸與x軸交于點(diǎn)B.
(1)求拋物線的函數(shù)表達(dá)式;
(2)經(jīng)過B,C的直線l平移后與拋物線交于點(diǎn)M,與x軸交于點(diǎn)N,當(dāng)以B,C,M,N為頂點(diǎn)的四邊形是平行四邊形時(shí),求出點(diǎn)M的坐標(biāo);
(3)若點(diǎn)D在x軸上,在拋物線上是否存在點(diǎn)P,使得△PBD≌△PBC?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

(1)拋物線為y=-x2+x+4.(2)M的坐標(biāo)為(6,4)或(3-,-4)或(3+,-4).(3)點(diǎn)P的坐標(biāo)為(4+,)或(4-,)或(-1+,-8+2)或(-1-,-8-2).

解析試題分析:(1)解析式已存在,y=ax2+bx+4,我們只需要根據(jù)特點(diǎn)描述求出a,b即可.由對稱軸為-,又過點(diǎn)A(-2,0),所以函數(shù)表達(dá)式易得.
(2)四邊形為平行四邊形,則必定對邊平行且相等.因?yàn)橐阎狹N∥BC,所以MN=BC,即M、N的位置如B、C位置關(guān)系,則可分2種情形,①N點(diǎn)在M點(diǎn)右下方,即M向下平行4個(gè)單位,向右2個(gè)單位與N重合;②M點(diǎn)在N右下方,即N向下平行4個(gè)單位,向右2個(gè)單位與M重合.因?yàn)镸在拋物線,可設(shè)坐標(biāo)為(x,-x2+x+4),易得N坐標(biāo).由N在x軸上,所以其縱坐標(biāo)為0,則可得關(guān)于x的方程,進(jìn)而求出x,求出M的坐標(biāo).
(3)使△PBD≌△PBC,易考慮∠CBD的平分線與拋物線的交點(diǎn).確定平分線可因?yàn)锽C=BD,可作等腰△BCD,利用三線合一,求其中線所在方程,進(jìn)而與拋物線聯(lián)立得方程組,解出P即可.
試題解析:(1)∵拋物線y=ax2+bx+4交x軸于A(-2,0),
∴0=4a-2b+4,
∵對稱軸是x=3,
∴-=3,即6a+b=0,
兩關(guān)于a、b的方程聯(lián)立解得 a=-,b=,
∴拋物線為y=-x2+x+4.
(2)∵四邊形為平行四邊形,且BC∥MN,
∴BC=MN.
①N點(diǎn)在M點(diǎn)右下方,即M向下平移4個(gè)單位,向右平移2個(gè)單位與N重合.
設(shè)M(x,-x2+x+4),則N(x+2,-x2+x),
∵N在x軸上,
∴-x2+x=0,
解得 x=0(M與C重合,舍去),或x=6,
∴xM=6,
∴M(6,4).
②M點(diǎn)在N右下方,即N向下平行4個(gè)單位,向右2個(gè)單位與M重合.
設(shè)M(x,- x2+x+4),則N(x-2,-x2+x+8),
∵N在x軸上,
∴-x2+x+8=0,
解得 x=3-,或x=3+,
∴xM=3-,或3+
∴M(3-,-4)或(3+,-4)
綜上所述,M的坐標(biāo)為(6,4)或(3-,-4)或(3+,-4).
(3)∵OC=4,OB=3,
∴BC=5.
如果△PBD≌△PBC,那么BD=BC=5,
∵D在x軸上,
∴D為(-2,0)或(8,0).
①當(dāng)D為(-2,0)時(shí),連接CD,過B作直線BE平分∠DBC交CD于E,交拋物線于P1,P2,
此時(shí)△P1BC≌△P1BD,△P2BC≌△P2BD,
∵BC=BD,
∴E為CD的中點(diǎn),即E(-1,2),
設(shè)過E(-1,2),B(3,0)的直線為y=kx+b,則,
解得
∴BE:y=-x+
設(shè)P(x,y),則有,
解得 ,或,
則P1(4+,),P2(4-,).
②當(dāng)D為(8,0)時(shí),連接CD,過B作直線BF平分∠DBC交CD于F,交拋物線于P3,P4
此時(shí)△P3BC≌△P3BD,△P4BC≌△P4BD,
∵BC=BD,
∴F為CD的中點(diǎn),即E(4,2),
設(shè)過E(4,2),B(3,0)的直線為y=kx+b,則,
解得
∴BF:y=2x-6.
設(shè)P(x,y),則有,
解得
則P3(-1+,-8+2),P4(-1-,-8-2).
綜上所述,點(diǎn)P的坐標(biāo)為(4+)或(4-,)或(-1+,-8+2)或(-1-,-8-2).
【考點(diǎn)】二次函數(shù)綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,排球運(yùn)動員站在點(diǎn)O處練習(xí)發(fā)球,將球從點(diǎn)O正上方2米的點(diǎn)A處發(fā)出把球看成點(diǎn),其運(yùn)行的高度y(米)與運(yùn)行的水平距離x(米)滿足關(guān)系式y(tǒng)=a(x﹣6)2+h,已知 球網(wǎng)與點(diǎn)O的水平距離為9米,高度為2.43米,球場的邊界距點(diǎn)O的水平距離為18米.
(1)當(dāng)h=2.6時(shí),求y與x的函數(shù)關(guān)系式.
(2)當(dāng)h=2.6時(shí),球能否越過球網(wǎng)?球會不會出界?請說明理由.
(3)若球一定能越過球網(wǎng),又不出邊界.則h的取值范圍是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜邊BC上的高,垂足為D,BE=1cm.點(diǎn)M從點(diǎn)B出發(fā)沿BC方向以1cm/s的速度運(yùn)動,點(diǎn)N從點(diǎn)E出發(fā),與點(diǎn)M同時(shí)同方向以相同的速度運(yùn)動,以MN為邊在BC的上方作正方形MNGH.點(diǎn)M到達(dá)點(diǎn)D時(shí)停止運(yùn)動,點(diǎn)N到達(dá)點(diǎn)C時(shí)停止運(yùn)動.設(shè)運(yùn)動時(shí)間為t(s).
(1)當(dāng)t為何值時(shí),點(diǎn)G剛好落在線段AD上?
(2)設(shè)正方形MNGH與Rt△ABC重疊部分的圖形的面積為S,當(dāng)重疊部分的圖形是正方形時(shí),求出S關(guān)于t的函數(shù)關(guān)系式并寫出自變量t的取值范圍.
(3)設(shè)正方形MNGH的邊NG所在直線與線段AC交于點(diǎn)P,連接DP,當(dāng)t為何值時(shí),△CPD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中, 拋物線+與直線交于A, B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè).
(1)如圖1,當(dāng)時(shí),直接寫出A,B兩點(diǎn)的坐標(biāo);
(2)在(1)的條件下,點(diǎn)P為拋物線上的一個(gè)動點(diǎn),且在直線AB下方,試求出△ABP面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線+ 軸交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)).在直線上是否存在唯一一點(diǎn)Q,使得∠OQC=90°?若存在,請求出此時(shí)的值;若不存在,請說明理由.

圖1                                   圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)y=﹣x2+bx+c的對稱軸為x=2,且經(jīng)過原點(diǎn),直線AC解析式為y=kx+4,
(1)求二次函數(shù)解析式;
(2)若=,求k;
(3)若以BC為直徑的圓經(jīng)過原點(diǎn),求k.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:矩形ABCD中,M為BC邊上一點(diǎn), AB=BM=10,MC=14,如圖1,正方形EFGH的頂點(diǎn)E和點(diǎn)B重合,點(diǎn)F、G、H分別在邊AB、AM、BC上.如圖2,P為對角線AC上一動點(diǎn),正方形EFGH從圖1的位置出發(fā),以每秒1個(gè)單位的速度沿BC向點(diǎn)C勻速移動;同時(shí),點(diǎn)P從C點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿CA向點(diǎn)A勻速移動.當(dāng)點(diǎn)F到達(dá)線段AC上時(shí),正方形EFGH和點(diǎn)P同時(shí)停止運(yùn)動.設(shè)運(yùn)動時(shí)間為t秒,解答下列問題:
(1)在整個(gè)運(yùn)動過程中,當(dāng)點(diǎn)F落在線段AM上和點(diǎn)G落在線段AC上時(shí),分別求出對應(yīng)t的值;
(2)在整個(gè)運(yùn)動過程中,設(shè)正方形重疊部分面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式以及自變量t的取值范圍;
(3)在整個(gè)運(yùn)動過程中,是否存在點(diǎn)P,使是以DG為腰的等腰三角形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,且頂點(diǎn)在直線x=上.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點(diǎn)A、B、O的對應(yīng)點(diǎn)分別是D、C、E,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說明理由;
(3)在(2)的條件下,連接BD,已知對稱軸上存在一點(diǎn)P使得△PBD的周長最小,求出P點(diǎn)的坐標(biāo);
(4)在(2)、(3)的條件下,若點(diǎn)M是線段OB上的一個(gè)動點(diǎn)(點(diǎn)M與點(diǎn)O、B不重合),過點(diǎn)M作MN∥BD交x軸于點(diǎn)N,連接PM、PN,設(shè)OM的長為t,△PMN的面積為S,求S和t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時(shí)M點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知關(guān)于的方程:①和②,其中.
(1)求證:方程①總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)二次函數(shù)的圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),將、兩點(diǎn)按照相同的方式平移后,點(diǎn)落在點(diǎn)處,點(diǎn)落在點(diǎn)處,若點(diǎn)的橫坐標(biāo)恰好是方程②的一個(gè)根,求的值;
(3)設(shè)二次函數(shù),在(2)的條件下,函數(shù),的圖象位于直線左側(cè)的部分與直線)交于兩點(diǎn),當(dāng)向上平移直線時(shí),交點(diǎn)位置隨之變化,若交點(diǎn)間的距離始終不變,則的值是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)D為拋物線的頂點(diǎn),點(diǎn)E在拋物線上,點(diǎn)F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,
(1)求拋物線所對應(yīng)的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)A對應(yīng)點(diǎn)為點(diǎn)G,問點(diǎn)G是否在該拋物線上?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案