【題目】為了提高中學(xué)生身體素質(zhì),學(xué)校開設(shè)了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動,為了解學(xué)生對這四種體育活動的喜歡情況,在全校隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個被調(diào)查的對象必須選擇而且只能在四種體育活動中選擇一種),將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).
(1)這次調(diào)查中,一共調(diào)查了________名學(xué)生;
(2)請補(bǔ)全兩幅統(tǒng)計圖;
(3)若有3名喜歡跳繩的學(xué)生,1名喜歡足球的學(xué)生組隊外出參加一次聯(lián)誼活動,欲從中選出2人擔(dān)任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率.
【答案】(1)200;(2)答案見解析;(3).
【解析】試題分析:根據(jù)A組的人數(shù)和百分比求出總?cè)藬?shù),然后分別求出C組的人數(shù)和B組的百分比,完成統(tǒng)計圖;根據(jù)題意列出表格,求出概率.
試題解析:(1)40÷20%=200(名)
(2)C組人數(shù):200-40-70-30=60(名) B組百分比:70÷200×100%=35% 如圖
(3)用表示喜歡跳繩的學(xué)生,用B表示喜歡足球的學(xué)生,列表如下
第一人 | C1 | C2 | C3 | B |
C1 | (C2,C1) | (C3,C1) | (B, C1) | |
C2 | (C1,C2) | (C3,C2) | (B, C2) | |
C3 | (C1,C3) | (C2,C3) | (B, C3) | |
B | (C1,B) | (C2,B) | (C3span>,B) |
∴P(一人是喜歡跳繩,一人是喜歡足球的學(xué)生)=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把順次連接四邊形各邊中點(diǎn)所得的四邊形叫做中點(diǎn)四邊形.若一個任意四邊形的面積為a,則它的中點(diǎn)四邊形面積為( )
A.aB. C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B、C三點(diǎn)的坐標(biāo)分別為(-2,3)(-3,1)(-5,2),將△ABC先右平移3個單位,再向下平移1個單位得到△DEF.
(1)畫出△DEF,并寫出點(diǎn)D,E,F的坐標(biāo);
(2)求△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,且∠BAC=70°,AD是△ABC的角平分線,點(diǎn)E是AC邊上的一點(diǎn),點(diǎn)F為直線AB上的一動點(diǎn),連結(jié)EF,直線EF與直線AD交于點(diǎn)P,設(shè)∠AEF=α°
(1)如圖①,若 DE//AB,則①∠ADE的度數(shù)是_______;
②當(dāng)∠DPE=∠DEP時,∠AEF= _____度:當(dāng)∠PDE=∠PED,∠AEF=_______度;
(2)如圖②,若DE⊥AC,則是否存在這樣的α的值,使得△DPE中有兩個相等的角?若存在求出α的值;若不存在,說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知: A 0,1 , B 2, 0 , C 4, 3 .
(1)求△ABC 的面積;
(2)設(shè)點(diǎn) P 在坐標(biāo)軸上,且△ABC 和△ABP 的面積相等,直接寫出 P 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水蜜桃是無錫市陽山的特色水果,水蜜桃一上市,水果店的老板用2000元購進(jìn)一批水密桃,很快售完;老板又用3300元購進(jìn)第二批水蜜桃,所購件數(shù)是第一批的倍,但進(jìn)價比第一批每件多了5元.
(1)第一批水蜜桃每件進(jìn)價是多少元?
(2)老板以每件65元的價格銷售第二批水蜜桃,售出80%后,為了盡快售完,剩下的決定打折促銷.要使得第二批水密桃的銷售利潤不少于288元,剩余的仙桃每件售價最多打幾折?(利潤=售價-進(jìn)價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點(diǎn)重合在點(diǎn)O處,AB=25,CD=17.保持紙片AOB不動,將紙片COD繞點(diǎn)O逆時針旋轉(zhuǎn)α(0°<α<90°)角度,如圖2所示.
(1)利用圖2證明AC=BD且AC⊥BD;
(2)當(dāng)BD與CD在同一直線上(如圖3)時,求AC的長和α的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(diǎn)(0,2)和(1,﹣1),求圖象的頂點(diǎn)坐標(biāo)和對稱軸.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com