【題目】如圖數(shù)軸上點(diǎn)A表示數(shù)x,點(diǎn)B表示-2,點(diǎn)C表示數(shù)2x+8.

(1)若將數(shù)軸沿點(diǎn)B對(duì)折,點(diǎn)A與點(diǎn)C恰好重合,則點(diǎn)A和點(diǎn)C分別表示什么數(shù)?

(2)BC=4AB,則點(diǎn)A和點(diǎn)C分別表示什么數(shù)?

【答案】(1)點(diǎn)A表示的數(shù)為-4,點(diǎn)C表示的數(shù)為0;(2) 點(diǎn)A表示的數(shù)為-3,點(diǎn)C表示的數(shù)為2

【解析】1)根據(jù)將數(shù)軸沿點(diǎn)B對(duì)折,點(diǎn)A與點(diǎn)C恰好重合可知AB=BC,從而可得關(guān)于x的方程,解方程求得x即可得答案;

(2)由BC=4AB可得關(guān)于x的方程,解方程求得x即可得答案.

(1)由題意可得:2x+8-(-2)=-2-x,

解得:x=-4,

2x+8=2×(-4)+8=0,

∴點(diǎn)A表示的數(shù)為-4,點(diǎn)C表示的數(shù)為0.

(2)由題意得:2x+8-(-2)=4(-2-x),

解得x=-3,

2x+8=2×(-3)+8=2,

∴點(diǎn)A表示的數(shù)為-3,點(diǎn)C表示的數(shù)為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖并計(jì)算:已知線段AB=2 cm,延長(zhǎng)線段AB至點(diǎn)C,使得2BC=AB,再反向延長(zhǎng)AC至點(diǎn)D,使得AD=AC.

(1)準(zhǔn)確地畫出圖形,并標(biāo)出相應(yīng)的字母;

(2)線段DC的中點(diǎn)是哪個(gè)?線段AB的長(zhǎng)是線段DC長(zhǎng)的幾分之幾?

(3)求出線段BD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生體育訓(xùn)練的情況,某市從全市九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行了一次體育科目測(cè)試(把成績(jī)結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格),并將測(cè)試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:
(1)求本次抽樣測(cè)試的學(xué)生人數(shù);
(2)求扇形圖中∠α的度數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該市九年級(jí)共有學(xué)生9000名,如果全部參加這次體育測(cè)試,則測(cè)試等級(jí)為D的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A為函數(shù)y= (x>0)圖象上一點(diǎn),連結(jié)OA,交函數(shù)y= (x>0)的圖象于點(diǎn)B,點(diǎn)C是x軸上一點(diǎn),且AO=AC,則△ABC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列等式成立的是( )

A. -a-b2+a-b2=-4ab B. -a-b2+a-b2=a2+b2

C. -a-b)(a-b=a-b2 D. -a-b)(a-b=b2-a2

【答案】D

【解析】解析:∵-a-b2+a-b2=a+b2+a-b2=a2+2ab+b2+a2-2ab+b2=2a2+2b2,

∴選項(xiàng)A與選項(xiàng)B錯(cuò)誤;

-a-b)(a-b=-a+b)(a-b=-a2-b2=b2-a2,∴選項(xiàng)C錯(cuò)誤,選項(xiàng)D正確.

故選D.

型】單選題
結(jié)束】
8

【題目】x=1,y=x2+4xy+4y2的值是

A. 2 B. 4 C. 32 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a,bc分別是ABC的三邊長(zhǎng),且滿足2a4+2b4+c4=2a2c2+2b2c2,ABC( )

A. 等腰三角形 B. 等腰直角三角形

C. 直角三角形 D. 等腰三角形或直角三角形

【答案】B

【解析】解析:∵2a4+2b4+c4=2a2c2+2b2c2,4a4-4a2c2+c4+4b4-4b2c2+c4=0

2a2-c22+2b2-c22=0,2a2-c2=0,2b2-c2=0,

c=2ac=2b,

a=b,且a2+b2=c2,

∴△ABC為等腰直角三角形.

故選B.

型】單選題
結(jié)束】
11

【題目】將圖1中陰影部分的小長(zhǎng)方形變換到圖2的位置,你能根據(jù)兩個(gè)圖形的面積關(guān)系得到的數(shù)學(xué)公式是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的周長(zhǎng)是26cm,對(duì)角線AC與BD交于點(diǎn)O,AC⊥AB,E是BC中點(diǎn),△AOD的周長(zhǎng)比△AOB的周長(zhǎng)多3cm,則AE的長(zhǎng)度為(
A.3cm
B.4cm
C.5cm
D.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條直線上任取一點(diǎn)A,截取AB=20 cm,再截取AC=18 cm,M,N分別是AB,AC的中點(diǎn),求M,N兩點(diǎn)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】云南地區(qū)地震發(fā)生后,市政府籌集了必需物資120噸打算運(yùn)往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車均滿載)

(1)若全部物資都用甲、乙兩種車型來運(yùn)送,需運(yùn)費(fèi)8200元,問分別需甲、乙兩種車型各幾輛?

(2)為了節(jié)省運(yùn)費(fèi),市政府打算用甲、乙、丙三種車型同時(shí)參與運(yùn)送,已知它們的總輛數(shù)為14輛,你能求出這三種車型分別有多少輛嗎?此時(shí)的運(yùn)費(fèi)又是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案