如圖,方格紙中的每個(gè)都是邊長為1的正方形,將△OAB繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°得到△OA′B′.
(1)在給定的方格紙中畫出△OA′B′;
(2)OA的長為______,AA′的長為______
【答案】分析:(1)將△ABC的三點(diǎn)與點(diǎn)O連線并延長相同長度找對應(yīng)點(diǎn),然后順次連接得中心對稱圖形△A′B′C′;
(2)根據(jù)勾股定理可求出OA的長,AA′的長也可根據(jù)勾股定理求出.
解答:解:(1)△OA′B′的位置如圖.(4分)

(2)OA===5,(5分)
AA′===5.(7分)
點(diǎn)評:本題考查旋轉(zhuǎn)變換作圖,及在網(wǎng)格中利用勾股定理求線段的長的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(2,-1).
(1)把△ABC先向上平移4個(gè)單位得△A1B1C1,再沿x軸翻折得△A2B2C2,請?jiān)诰W(wǎng)格中畫出△A2B2C2,并寫出C2的坐標(biāo).
(2)以原點(diǎn)為位似中心,在第二象限內(nèi)畫出△ABC的位似圖形△A3B3C3,且△A3B3C3與△ABC的相似比為2,并寫出C3的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,方格紙中的每個(gè)小方格都是邊長為1的正方形,我們把以格點(diǎn)間連續(xù)為邊的三角形稱為“格點(diǎn)三角形”,圖中的△ABC是格點(diǎn)三角形,在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(-1,-1)把△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得到△A1B1C,畫出△A1B1C的圖形,并寫出點(diǎn)B1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(-1,0)
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點(diǎn)O按逆時(shí)針旋轉(zhuǎn)90°所得的△A2B2C2
(3)△A1B1C1與△A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,寫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,方格紙中的每個(gè)小正方格都是邊長為1個(gè)單位長度的正方形,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC的頂點(diǎn)均在格點(diǎn)上,O、M都在格點(diǎn)上.
(1)畫出△ABC關(guān)于直線OM對稱的△A1B1C1
(2)畫出將△ABC繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°后得到的△A2B2C2
(3)△A1B1C1與△A2B2C2組成的圖形是軸對稱圖形碼?如果是軸對稱圖形,請畫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,方格紙中的每個(gè)小方格都是邊長為1的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,A(-1,5),B(-1,0),C(-4,3).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;(其中A1、B1、C1是A、B、C的對應(yīng)點(diǎn),不寫畫法)
(2)寫出A1、B1、C1的坐標(biāo);
(3)求出△A1B1C1的面積.

查看答案和解析>>

同步練習(xí)冊答案