精英家教網 > 初中數學 > 題目詳情
如圖,在平面直角坐標系中,O為坐標原點,B(5,0),M為等腰梯形OBCD底邊OB上一點,OD=BC=2,∠DMC=∠DOB=60度.
(1)求點D,B所在直線的函數表達式;
(2)求點M的坐標;
(3)∠DMC繞點M順時針旋轉α(0°<α<30°后,得到∠D1MC1(點D1,C1依次與點D,C對應),射線MD1交邊DC于點E,射線MC1交邊CB于點F,設DE=m,BF=n.求m與n的函數關系式.

【答案】分析:(1)過點D作DA⊥OB,垂足為A.利用三角函數可求得,點D的坐標為(1,),設直線DB的函數表達式為y=kx+b,把點B(5,0),D(1,)代入解析式利用待定系數法,得直線DB的函數表達式為y=-x+;
(2)先證明△ODM∽△BMC.得,所以OD•BC=BM•OM.設OM=x,則BM=5-x,得2×2=x(5-x),解得x的值,即可求得M點坐標;
(3)(Ⅰ)當M點坐標為(1,0)時,如圖①,OM=1,BM=4.先求得DME∽△CMF,所以
可得CF=2DE.所以2-n=2m,即m=1-.(Ⅱ)當M點坐標為(4,0)時,OM=4,BM=1.同(Ⅰ),可得△DME∽△CMF,得,所以DE=2CF.解得m=2(2-n),即m=4-2n.
解答:解:(1)過點D作DA⊥OB,垂足為A.
在Rt△ODA中,∠DAO=90°,∠DOB=60°,
∴DA=OD•sin∠DOB=,
OA=OD•cos∠DOB=1,
∴點D的坐標為(1,),
設直線DB的函數表達式為y=kx+b,
由B(5,0),D(1,),得
解得,
∴直線DB的函數表達式為y=-x+;

(2)∵∠DMC=∠DOB=60°,
∴∠ODM+∠DMO=120°,∠DMO+∠CMB=120°,
∴∠ODM=∠CMB,
∵等腰梯形ABCD的∠DOB=∠CBO,
∴△ODM∽△BMC,
,
∴OD•BC=BM•OM,
∵B點為(5,0),
∴OB=5.
設OM=x,則BM=5-x
∵OD=BC=2,
∴2×2=x(5-x),
解得x1=1,x2=4,
∴M點坐標為(1,0)或(4,0);

(3)解:(Ⅰ)當M點坐標為(1,0)時,如圖1,
OM=1,BM=4.
∵DC∥OB,
∴∠MDE=∠DMO,
又∵∠DMO=∠MCB,
∴∠MDE=∠MCB,
∵∠DME=∠CMF=α,
∴△DME∽△CMF,
,
∴CF=2DE,
∵CF=2-n,DE=m,
∴2-n=2m,即m=1-;
(Ⅱ)當M點坐標為(4,0)時,如圖2
OM=4,BM=1.
同(Ⅰ),可得△DME∽△CMF,
,
∴DE=2CF,
∵CF=2-n,DE=m,
∴m=2(2-n),即m=4-2n.
綜上所述,m與n的函數關系式為:m=1-或m=4-2n.
點評:主要考查了函數和幾何圖形的綜合運用,其涉及的知識點比較多.解題的關鍵是會靈活的運用函數圖象的性質和交點的意義結合梯形的性質利用相似比中的成比例線段作為相等關系求線段之間的等量關系.試題中貫穿了方程思想和數形結合的思想,請注意體會.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數點(橫、縱坐標均為整數)中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案