【題目】如圖,一條拋物線與x軸相交于A、B兩點,其頂點P在折線C-D-E上移動,若點C、D、E的坐標(biāo)分別為(-1,4)、(3,4)、(3,1),點B的橫坐標(biāo)的最小值為1,則點A的橫坐標(biāo)的最大值為( )
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】試題解析:由圖知:當(dāng)點B的橫坐標(biāo)為1時,拋物線頂點取C(-1,4),設(shè)該拋物線的解析式為:y=a(x+1)2+4,代入點B坐標(biāo),得:
0=a(1+1)2+4,a=-1,
即:B點橫坐標(biāo)取最小值時,拋物線的解析式為:y=-(x+1)2+4.
當(dāng)A點橫坐標(biāo)取最大值時,拋物線頂點應(yīng)取E(3,1),則此時拋物線的解析式:y=-(x-3)2+1=-x2+6x-8=-(x-2)(x-4),即與x軸的交點為(2,0)或(4,0)(舍去),
∴點A的橫坐標(biāo)的最大值為2.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,E是CB延長線上一個動點,F、G分別為AE、BC的中點,FG與ED相交于點H
(1) 求證:HE=HG
(2) 如圖2,當(dāng)BE=AB時,過點A作AP⊥DE于點P連接BP,求的值
(3) 在(2)的條件下,若AD=2,∠ADE=30°,則BP的長為______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列4個命題:①同旁內(nèi)角互補;②相等的角是對頂角;③等角的補角相等;④兩直線平行,同位角相等.其中,假命題的個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明認為下列括號內(nèi)都可以填a4 , 你認為使等式成立的只能是( )
A.a12=( )3
B.a12=( )4
C.a12=( )2
D.a12=( )6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論:
①數(shù)軸上的點只能表示有理數(shù);
②任何一個無理數(shù)都能用數(shù)軸上的點表示;
③實數(shù)與數(shù)軸上的點一一對應(yīng);
④有理數(shù)有無限個,無理數(shù)有有限個.
其中,正確的結(jié)論有個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組做“用頻率估計概率”的試驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計圖,則符合這一結(jié)果的試驗最有可能的是( )
A. 在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”
B. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
C. 暗箱中有1個紅球和2個黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球
D. 擲一個質(zhì)地均勻的正六面體骰子,向上的面點數(shù)是4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠ABC=60°,E是對角線AC上任意一點,F(xiàn)是線段BC延長線上一點,且CF=AE,連接BE、EF.
(1)如圖1,當(dāng)E是線段AC的中點時,求證:BE=EF.
(2)如圖2,當(dāng)點E不是線段AC的中點,其它條件不變時,請你判斷(1)中的結(jié)論: .(填“成立”或“不成立”)
(3)如圖3,當(dāng)點E是線段AC延長線上的任意一點,其它條件不變時,(1)中的結(jié)論是否成立?若成立,請給予證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC=8,∠BAC=30°,將△ABC繞點A旋轉(zhuǎn),使點B落在原△ABC的點C處,此時點C落在點D處,延長線段AD,交原△ABC的邊BC的延長線于點E,那么線段DE的長等于 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com