【題目】已知如圖所示 AD、AE分別是△ABC的中線、高,且AB=5cm,AC=3cm,,則△ABD與△ACD的周長之差為_________,△ABD與△ACD的面積關(guān)系為_________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大潤發(fā)超市進(jìn)了一批成本為8元/個的文具盒.調(diào)查發(fā)現(xiàn):這種文具盒每個星期的銷售量y(個)與它的定價(jià)x(元/個)的關(guān)系如圖所示:
(1)求這種文具盒每個星期的銷售量y(個)與它的定價(jià)x(元/個)之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)每個文具盒的定價(jià)是多少元時(shí),超市每星期銷售這種文具盒(不考慮其他因素)可獲得的利潤為1200元?
(3)若該超市每星期銷售這種文具盒的銷售量不少于115個,且單件利潤不低于4元(x為整數(shù)),當(dāng)每個文具盒定價(jià)多少元時(shí),超市每星期利潤最高?最高利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點(diǎn)為B.有人在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi).已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑CD為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)如圖,建立直角坐標(biāo)系,求此拋物線的解析式;
(2)如果豎直擺放7個圓柱形桶時(shí),網(wǎng)球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶至多多少個時(shí),網(wǎng)球可以落入桶內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在5×4正方形網(wǎng)格中,有A,B,C三個格點(diǎn)(線與線的交點(diǎn)).
(1)若小正方形邊長為1,則AC= , AB=;
(2)在圖中再找出一個格點(diǎn)D,滿足:D與A,B,C三點(diǎn)中的兩點(diǎn)組成的三角形恰好與△ABC相似:∽△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1在平面直角坐標(biāo)系中.等腰Rt△OAB的斜邊OA在x軸上.P為線段OB上﹣動點(diǎn)(不與O,B重合).過P點(diǎn)向x軸作垂線.垂足為C.以PC為邊在PC的右側(cè)作正方形PCDM.OP= t、OA=3.設(shè)過O,M兩點(diǎn)的拋物線為y=ax2+bx.其頂點(diǎn)N(m,n)
(1)寫出t的取值范圍 , 寫出M的坐標(biāo):();
(2)用含a,t的代數(shù)式表示b;
(3)當(dāng)拋物線開向下,且點(diǎn)M恰好運(yùn)動到AB邊上時(shí)(如圖2)
①求t的值;
②若N在△OAB的內(nèi)部及邊上,試求a及m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個二次函數(shù)圖象的對稱軸交于點(diǎn)P,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的解析式為y=ax2+bx+c(a、b、c為常數(shù),a≠0),且a2+ab+ac<0,下列說法:
①b2﹣4ac<0;
②ab+ac<0;
③方程ax2+bx+c=0有兩個不同根x1、x2 , 且(x1﹣1)(1﹣x2)>0;
④二次函數(shù)的圖象與坐標(biāo)軸有三個不同交點(diǎn),
其中正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古埃及人曾經(jīng)用如圖所示的方法畫直角:把一根長繩打上等距離的13個結(jié),然后以3個結(jié)間距、4個結(jié)間距、5個結(jié)間距的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角,這樣做的道理是( 。
A. 直角三角形兩個銳角互補(bǔ)
B. 三角形內(nèi)角和等于180°
C. 如果三角形兩條邊長的平方和等于第三邊長的平方
D. 如果三角形兩條邊長的平方和等于第三邊長的平方,那么這個三角形是直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,點(diǎn)D在半徑OB的延長線上,∠BCD=∠A=30°.
(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑長為1,求由弧BC、線段CD和BD所圍成的陰影部分面積.(結(jié)果保留π和根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com