(2006•鄂爾多斯)如圖所示,某校宣傳欄后面2米處種了一排樹,每隔2米一棵,共種了6棵,小勇站在距宣傳欄中間位置的垂直距離3米處,正好看到兩端的樹干,其余的4棵均被擋住,那么宣傳欄的長(zhǎng)為    米.(不計(jì)宣傳欄的厚度)
【答案】分析:易證△ABC∽△ADE,根據(jù)相似三角形對(duì)應(yīng)邊成比例,對(duì)應(yīng)高之比等于相似比,列方程即可解答.
解答:解:根據(jù)題意可畫出圖形,小樹每隔2米一棵,共種了6棵.
∴BC=2×5=10m,CG===5m.
∵由圖形可知△AEF∽△ACG
=
=
解得EF=3m.
∴DE=2EF=2×3=6m.
點(diǎn)評(píng):本題考查相似三角形性質(zhì)的應(yīng)用.解題時(shí)關(guān)鍵是找出相似的三角形,然后根據(jù)對(duì)應(yīng)邊成比例列出方程,建立適當(dāng)?shù)臄?shù)學(xué)模型來(lái)解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•鄂爾多斯)如圖,在△ABC中,AB=AC=5,以AB為直徑的⊙P交BC于H.點(diǎn)A,B在x軸上,點(diǎn)H在y軸上,B點(diǎn)的坐標(biāo)為(1,0).
(1)求點(diǎn)A,H,C的坐標(biāo);
(2)過H點(diǎn)作AC的垂線交AC于E,交x軸于F,求證:EF是⊙P的切線;
(3)求經(jīng)過A,O兩點(diǎn)且頂點(diǎn)到x軸的距離等于4的拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•鄂爾多斯)如圖,點(diǎn)P在y軸上,⊙P交x軸于A,B兩點(diǎn),連接BP并延長(zhǎng)交⊙P于C,過點(diǎn)C的直線y=2x+b交x軸于D,且⊙P的半徑為,AB=4.
(1)求點(diǎn)B,P,C的坐標(biāo);
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+(a+1)x+6的圖象經(jīng)過點(diǎn)B,求這個(gè)二次函數(shù)的解析式,并寫出使二次函數(shù)值小于一次函數(shù)y=2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年甘肅省甘南州合作一中高中民族班、實(shí)驗(yàn)班招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•鄂爾多斯)如圖,點(diǎn)P在y軸上,⊙P交x軸于A,B兩點(diǎn),連接BP并延長(zhǎng)交⊙P于C,過點(diǎn)C的直線y=2x+b交x軸于D,且⊙P的半徑為,AB=4.
(1)求點(diǎn)B,P,C的坐標(biāo);
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+(a+1)x+6的圖象經(jīng)過點(diǎn)B,求這個(gè)二次函數(shù)的解析式,并寫出使二次函數(shù)值小于一次函數(shù)y=2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年內(nèi)蒙古鄂爾多斯市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•鄂爾多斯)如圖,點(diǎn)P在y軸上,⊙P交x軸于A,B兩點(diǎn),連接BP并延長(zhǎng)交⊙P于C,過點(diǎn)C的直線y=2x+b交x軸于D,且⊙P的半徑為,AB=4.
(1)求點(diǎn)B,P,C的坐標(biāo);
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+(a+1)x+6的圖象經(jīng)過點(diǎn)B,求這個(gè)二次函數(shù)的解析式,并寫出使二次函數(shù)值小于一次函數(shù)y=2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年內(nèi)蒙古鄂爾多斯市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•鄂爾多斯)如圖,在△ABC中,AB=AC=5,以AB為直徑的⊙P交BC于H.點(diǎn)A,B在x軸上,點(diǎn)H在y軸上,B點(diǎn)的坐標(biāo)為(1,0).
(1)求點(diǎn)A,H,C的坐標(biāo);
(2)過H點(diǎn)作AC的垂線交AC于E,交x軸于F,求證:EF是⊙P的切線;
(3)求經(jīng)過A,O兩點(diǎn)且頂點(diǎn)到x軸的距離等于4的拋物線解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案