精英家教網 > 初中數學 > 題目詳情

【題目】在平面直角坐標系中,點(a,5)關于原點對稱的點的坐標是(1,b+1),則點(a,b)在第象限.

【答案】三
【解析】解:根據中心對稱的性質,得:a=﹣1,b+1=﹣5, 解得:a=﹣1,b=﹣6,
∴點(﹣1,﹣6)在第三象限.
所以答案是:三.
【考點精析】關于本題考查的關于原點對稱的點的坐標,需要了解兩個點關于原點對稱時,它們的坐標的符號相反,即點P(x,y)關于原點的對稱點為P’(-x,-y)才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某班數學興趣小組對函數y=x2﹣2|x|的圖象和性質進行了探究,探究過程如下,請補充完整.(1)自變量x的取值范圍是全體實數,xy的幾組對應值列表如下:

x

﹣3

﹣2

﹣1

0

1

2

3

y

3

m

﹣1

0

﹣1

0

3

其中,m=  

2)根據表中數據,在如圖所示的平面直角坐標系中描點,并畫出了函數圖象的一部分,請畫出該函數圖象的另一部分.

3)觀察函數圖象,寫出兩條函數的性質.

4)進一步探究函數圖象發(fā)現:

①函數圖象與x軸有  個交點,所以對應的方程x2﹣2|x|=0   個實數根;

②方程x2﹣2|x|=2  個實數根.

③關于x的方程x2﹣2|x|=a4個實數根時,a的取值范圍是 

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖(1),在矩形ABCD中,AB=4,BC=6,P是AD的中點,N是BC延長線上一點,連結PN,過點P作PN的垂線,交AB于點E,交CD的延長線于點F,連結EN,FN,設CN=x,AE=y.

(1)求證:PE=PF;
(2)當0<x< 時,求y關于x的函數表達式;
(3)若將“矩形ABCD”變?yōu)椤傲庑蜛BCD”,如圖(2),AB=BC=4,∠B=60°,當0<x<3時,其它條件不變,求此時y關于x的函數表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若多項式2x2+3x﹣7的值為﹣10,則多項式6x2+9x+7的值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時,若船速為26千米/時,水速為2千米/時,求A港和B港相距多少千米.設A港和B港相距x千米.根據題意,可列出的方程是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知線段MN=8cm,點P為直線MN上的點,且點PN的距離為2cm,則線段PM_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:
(1)計算:(﹣2016)0+( ﹣2+(﹣3)3;
(2)簡算:982 -97×99.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將△ABC繞點A按逆時針方向旋轉θ度,并使各邊長變?yōu)樵瓉淼?/span>n倍,得△AB′C′ ,如圖①所示,∠BAB′ θ ,我們將這種變換記為n]

1)如圖①,對△ABC作變換[60°]得到△AB′C′ ,則:= ;直線BC與直線B′C′所夾的銳角為 度;

2)如圖②ABC中,∠BAC=30°,ACB=90°,對△ABC作變換n]得到△AB′C′,使點BC、在同一直線上,且四邊形ABB′C′為矩形,求θn的值;

3)如圖③,ABC中,AB=AC,BAC=36°BC=1,對△ABC作變換n]得到△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θn的值

查看答案和解析>>

同步練習冊答案