【題目】如圖,平面直角坐標(biāo)系中,點A、B分別在x、y軸上,點B的坐標(biāo)為(0,1),∠BAO=30°.
(1)求AB的長度;
(2)以AB為一邊作等邊△ABE,作OA的垂直平分線MN交AB的垂線AD于點D.求證:BD=OE;
(3)在(2)的條件下,連接DE交AB于F.求證:F為DE的中點.
【答案】(1)2;(2)詳見解析;(3)詳見解析.
【解析】
(1)直接運用直角三角形30°角的性質(zhì)即可.
(2)連接OD,易證△ADO為等邊三角形,再證△ABD≌△AEO即可.
(3)作EH⊥AB于H,先證△ABO≌△AEH,得AO=EH,再證△AFD≌△EFH即可.
(1)解:∵在Rt△ABO中,∠BAO=30°,
∴AB=2BO=2;
(2)證明:連接OD,
∵△ABE為等邊三角形,
∴AB=AE,∠EAB=60°,
∵∠BAO=30°,作OA的垂直平分線MN交AB的垂線AD于點D,
∴∠DAO=60°.
∴∠EAO=∠NAB
又∵DO=DA,
∴△ADO為等邊三角形.
∴DA=AO.
在△ABD與△AEO中,
∵,
∴△ABD≌△AEO(SAS).
∴BD=OE.
(3)證明:作EH⊥AB于H.
∵AE=BE,∴AH=AB,
∵BO=AB,∴AH=BO,
在Rt△AEH與Rt△BAO中,
,
∴Rt△AEH≌Rt△BAO(HL),
∴EH=AO=AD.
又∵∠EHF=∠DAF=90°,
在△HFE與△AFD中,
,
∴△HFE≌△AFD(AAS),
∴EF=DF.
∴F為DE的中點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=2,連接DE,動點P從點B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點A運動,設(shè)點P的運動時間為t秒,當(dāng)t的值為_____秒時,△ABP和△DCE全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=30°,以直角頂點A為圓心,AB長為半徑畫弧交BC于點D,過D作DE⊥AC于點E.若DE=a,則△ABC的周長用含a的代數(shù)式表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,邊長為2的正方形OABC的兩頂點A、C分別在y軸、x軸的正半軸上,點O在原點.現(xiàn)將正方形OABC繞O點順時針旋轉(zhuǎn),當(dāng)A點第一次落在直線y=x上時停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點M , BC邊交x軸于點N(如圖).
(1)求邊OA在旋轉(zhuǎn)過程中所掃過的面積;
(2)旋轉(zhuǎn)過程中,當(dāng)MN和AC平行時,求正方形OABC旋轉(zhuǎn)的度數(shù);
(3)設(shè)△MBN的周長為p , 在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD與四邊形AEFG是位似圖形,且AC:AF=2:3,則下列結(jié)論不正確的是( 。
A.四邊形ABCD與四邊形AEFG是相似圖形
B.AD與AE的比是2:3
C.四邊形ABCD與四邊形AEFG的周長比是2:3
D.四邊形ABCD與四邊形AEFG的面積比是4:9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB:BC:CA=3:4:5,且周長為36cm,點P從點A開始沿AB邊向點B以每秒1cm的速度移動;點Q從點B沿BC邊向點C以每秒2cm的速度移動;如果同時出發(fā),則過3秒時,求△BPQ的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜面AC的坡度(CD與AD的比)為1:2,AC=3 米,坡頂有旗桿BC , 旗桿頂端B點與A點有一條彩帶相連 . 若AB=10米,則旗桿BC的高度為( 。
A.5米
B.6米
C.8米
D.(3+ )米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CB⊥DB , 坡面AC的傾斜角為45° . 為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i= :3 . 若新坡角下需留3米寬的人行道,問離原坡角(A點處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請回答下列問題:
(1)敘述三角形中位線定理,并運用平行四邊形的知識證明;
(2)運用三角形中位線的知識解決如下問題:如圖,在四邊形ABCD中,AD∥BC , E、F分別是AB , CD的中點,求證:EF= (AD+BC)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com