【題目】如圖所示,平面直角坐標(biāo)系中,拋物線經(jīng)過、、.過點(diǎn)作軸交拋物線于點(diǎn),過點(diǎn)作軸,垂足為點(diǎn).點(diǎn)是四邊形的對(duì)角線的交點(diǎn),點(diǎn)在軸負(fù)半軸上,且.
(1)求拋物線的解析式,并直接寫出四邊形的形狀;
(2)當(dāng)點(diǎn)、從、兩點(diǎn)同時(shí)出發(fā),均以每秒個(gè)長(zhǎng)度單位的速度沿、方向運(yùn)動(dòng),點(diǎn)運(yùn)動(dòng)到時(shí)、兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為秒,在運(yùn)動(dòng)過程中,以、、、四點(diǎn)為頂點(diǎn)的四邊形的面積為,求出與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在拋物線上是否存在點(diǎn),使以、、、為頂點(diǎn)的四邊形是梯形?若存在,直接寫出點(diǎn)的坐標(biāo);不存在,說明理由.
【答案】(1),四邊形為正方形;(2)當(dāng)時(shí),;當(dāng)時(shí),;(3)在拋物線上存在點(diǎn),,,,使以、、、為頂點(diǎn)的四邊形是梯形.
【解析】
(1)由拋物線y=ax2+bx+c經(jīng)過A(0,4)、B(-2,0)、C(6,0)三點(diǎn),把三點(diǎn)坐標(biāo)代入拋物線表達(dá)式中,聯(lián)立方程解出a、b、c;
(2)過M作MN⊥OE于N,則MN=2,由題意可知CP=FQ=t,當(dāng)0≤t<2時(shí),OP=6-t,OQ=2-t,列出S與t的關(guān)系式,當(dāng)t=2時(shí),Q與O重合,點(diǎn)M、O、P、Q不能構(gòu)成四邊形,當(dāng)2<t<6時(shí),連接MO,ME則MO=ME且∠QOM=∠PEM=45°,可證三角形全等,進(jìn)而計(jì)算出三角形面積;
(3)若B、C、F、N為頂點(diǎn)的四邊形是梯形,則四邊形有兩邊平行,設(shè)出N點(diǎn)的坐標(biāo),分類討論兩邊平行時(shí)N點(diǎn)坐標(biāo)滿足的條件,進(jìn)而求出N點(diǎn)坐標(biāo).
解:(1)∵拋物線經(jīng)過、、,
∴,
,
解得,,.
∴拋物線的解析式為.
四邊形為正方形.
(2)連接.
根據(jù)題意,可知,,
∴,
∴,
∵運(yùn)動(dòng)的時(shí)間為,
∴,
過作于,則,
當(dāng)時(shí),,,
∴,
∴.
當(dāng)時(shí),與重合,點(diǎn)、、、不能構(gòu)成四邊形,
當(dāng)時(shí),連接,則且,
∵,,
∴,
∴,
∴四邊形的面積,
綜上所述,當(dāng)時(shí),;當(dāng)時(shí),.
(3)分三種情況:
①以為底邊時(shí),經(jīng)過點(diǎn)作的平行線,與拋物線交于點(diǎn)的坐標(biāo)為;
②以為底邊時(shí),經(jīng)過點(diǎn)作的平行線,與拋物線交于點(diǎn)的坐標(biāo)為;
③以為底邊時(shí),經(jīng)過點(diǎn)作的平行線,與拋物線交于點(diǎn)的坐標(biāo)為或.
故在拋物線上存在點(diǎn),,,,
使以、、、為頂點(diǎn)的四邊形是梯形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+b與x軸交于點(diǎn)A,與y軸于點(diǎn)B,點(diǎn)C(﹣2,0)在線段OA上,且OC=OA.
(1)求b的值;
(2)點(diǎn)P是直線y=x+b上一動(dòng)點(diǎn),連接PC,PO,求PC+PO的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,BC=6,AB=10.點(diǎn)Q與點(diǎn)B在AC的同側(cè),且AQ⊥AC.
(1)如圖1,點(diǎn)Q不與點(diǎn)A重合,連結(jié)CQ交AB于點(diǎn)P.設(shè)AQ=x,AP=y,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)是否存在點(diǎn)Q,使△PAQ與△ABC相似,若存在,求AQ的長(zhǎng);若不存在,請(qǐng)說明理由;
(3)如圖2,過點(diǎn)B作BD⊥AQ,垂足為D.將以點(diǎn)Q為圓心,QD為半徑的圓記為⊙Q.若點(diǎn)C到⊙Q上點(diǎn)的距離的最小值為8,求⊙Q的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時(shí),y的值隨x值的增大而增大;⑤當(dāng)函數(shù)值y<0時(shí),自變量x的取值范圍是x<-1或x>5.
其中正確的結(jié)論有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=50°,CE為△ABC的角平分線,AC邊上的高BD與CE所在的直線交于點(diǎn)F,若∠ABD:∠ACF=3:5,則∠BEC的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年8月,第18屆世界警察和消防員運(yùn)動(dòng)會(huì)在成都舉行.我們?cè)隗w育館隨機(jī)調(diào)查了部分市民當(dāng)天的觀賽時(shí)間,并用得到的數(shù)據(jù)繪制了如下不完整的統(tǒng)計(jì)圖,根據(jù)圖中信息完成下列問題:
(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求抽查的市民觀賽時(shí)間的眾數(shù)、中位數(shù);
(3)求所有被調(diào)查市民的平均觀賽時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是
A. a>0 B. 當(dāng)﹣1<x<3時(shí),y>0
C. c<0 D. 當(dāng)x≥1時(shí),y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn).
(1)在圖1中以格點(diǎn)為頂點(diǎn)畫一個(gè)面積為10的正方形;
(2)在圖2中以格點(diǎn)為頂點(diǎn)畫一個(gè)三角形,使三角形三邊長(zhǎng)分別為2、、;
(3)如圖3,點(diǎn)A、B、C是小正方形的頂點(diǎn),求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列哪個(gè)條件不能判定△ABM≌△CDN( )
A.AM=CNB.AB=CD C.AM∥CN D.∠M=∠N
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com