【題目】如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點B落在點E處,
(1)求證:△AOE≌△COD;
(2)連接DE,若DE:AC=3:5,求tan∠ACB.
【答案】(1)見解析;(2)
【解析】
(1)由矩形的性質和折疊的性質可得AE=CD,由“AAS”可證△AEO≌△CDO;
(2)由全等三角形的性質可得AO=CO,EO=DO,即可得,可證△DOE∽△COA,可得EO:CO=3:5,即可設EO=DO=3x,AO=CO=5x,AD=8x,由勾股定理可求CD=4x=AB,即可求解.
解:證明:(1)∵四邊形ABCD是矩形
∴AB=CD,AD=BC,∠B=∠ADC=90°,
∵折疊
∴AE=AB,
∵AE=CD,∠AOE=∠COD,∠AEC=∠ADC
∴△AEO≌△CDO(AAS)
(2)∵△AEO≌△CDO
∴AO=CO,EO=DO
∴且∠AOC=∠DOE
∴△DOE∽△COA
∴,且DE:AC=3:5,
∴EO:CO=3:5
設EO=DO=3x,AO=CO=5x,
∴DA=BC=8x,CD==4x=AB
∴tan∠ACB===
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,BE、DF分別是平行四邊形的兩個外角的平分線,∠EAF=∠BAD,邊AE、AF分別交兩條角平分線于點E、F.
(1)求證:△ABE∽△FDA;
(2)聯結BD、EF,如果DF2=ADAB,求證:BD=EF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰直角三角形中,,一個三角尺的直角頂點與邊的中點重合,且兩條直角邊分別經過點和點,將三角尺繞點按順時針方向旋轉任意一個銳角,當三角尺的兩直角邊與,分別交于點,時,下列結論中錯誤的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數進行調查統計.現從該校隨機抽取名學生作為樣本,采用問卷調查的方法收集數據(參與問卷調查的每名學生只能選擇其中一項).并根據調查得到的數據繪制成了如圖所示的兩幅不完整的統計圖.由圖中提供的信息,解答下列問題:
(1)求n的值;
(2)若該校學生共有1200人,試估計該校喜愛看電視的學生人數;
(3)若調查到喜愛體育活動的4名學生中有3名男生和1名女生,現從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD邊長為3,點E在AB邊上且BE=1,點P,Q分別是邊BC,CD的動點(均不與頂點重合),當四邊形AEPQ的周長取最小值時,四邊形AEPQ的面積是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的直徑AB為10cm,弦BC為5cm,D、E分別是∠ACB的平分線與⊙O,AB的交點,P為AB延長線上一點,且PC=PE.
(1)求AC、AD的長;
(2)試判斷直線PC與⊙O的位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一塊形狀如圖的五邊形余料,,,,,.要在這塊余料中截取一塊矩形材料,其中一邊在上,并使所截矩形的面積盡可能大.
(1)若所截矩形材料的一條邊是或,求矩形材料的面積;
(2)能否截出比(1)中面積更大的矩形材料?如果能,求出這些矩形材料面積的最大值,如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1和圖2,在△ABC中,AB=13,BC=14,.
探究:如圖1,AH⊥BC于點H,則AH=___,AC=___,△ABC的面積=___.
拓展:如圖2,點D在AC上(可與點A、C重合),分別過點A、C作直線BD的垂線,垂足為E、F,設BD=x,AE=m,CF=n,(當點D與A重合時,我們認為=0).
(1)用含x、m或n的代數式表示及;
(2)求(m+n)與x的函數關系式,并求(m+n)的最大值和最小值;
(3)對給定的一個x值,有時只能確定唯一的點D,指出這樣的x的取值范圍.
發(fā)現:請你確定一條直線,使得A、B、C三點到這條直線的距離之和最。ú槐貙懗鲞^程),并寫出這個最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“五一勞動節(jié)大酬賓!”,某商場設計的促銷活動如下:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“50元”的字樣.規(guī)定:在本商場同一日內,顧客每消費滿300元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回).商場根據兩小球所標金額的和返還相等價格的購物券,購物券可以在本商場消費.某顧客剛好消費300元.
(1)該顧客至多可得到________元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于50元的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com