【題目】如圖,在平面直角坐標系中,邊長為2的正方形OABC的頂點A、C分別在x軸、y軸的正半軸上,二次函數(shù)的圖象經(jīng)過B、C兩點.

1)求該二次函數(shù)的解析式;

2)將該二次函數(shù)圖象向下平移幾個單位,可使平移后所得圖象經(jīng)過坐標原點?直接寫出平移后所得圖象與x軸的另一個交點的坐標.

【答案】1;(2)圖象與x軸的另一個交點的坐標為(2,0).

【解析】

(1)根據(jù)正方形的性質(zhì)得出點B、C的坐標,再利用待定系數(shù)法進行求解即可;

(2)根據(jù)點C坐標可得向下平行的單位長度,即可得平移后的拋物線解析式,令y=0,解方程求得x的值,繼而可得答案.

(1)∵正方形的邊長為2,

B、C的坐標分別為(2,2)(0,2)

,

解得,

二次函數(shù)的解析式為;

(2)因為C(0,2),

所以將該二次函數(shù)圖象向下平移2個單位,可使平移后所得圖象經(jīng)過坐標原點,

此時拋物線的解析式為:,

y=0,則,

解得

所以圖象與x軸的另一個交點的坐標為(2,0)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳館推出了兩種收費方式.

方式一:顧客先購買會員卡,每張會員卡200元,僅限本人一年內(nèi)使用,憑卡游泳,每次游泳再付費30.

方式二:顧客不購買會員卡,每次游泳付費40.設(shè)小亮在一年內(nèi)來此游泳館的次數(shù)為x次,選擇方式一的總費用為y1(),選擇方式二的總費用為y2().

(1)請分別寫出y1y2x之間的函數(shù)表達式.

(2)小亮一年內(nèi)在此游泳館游泳的次數(shù)x在什么范圍時,選擇方式一比方式二省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織學(xué)生到恩格貝和康鎮(zhèn)進行研學(xué)活動,澄澄老師在網(wǎng)上查得,分別位于學(xué)校的正北和正東方向,位于南偏東37°方向,校車從出發(fā),沿正北方向前往地,行駛到15千米的處時,導(dǎo)航顯示,在處北偏東45°方向有一服務(wù)區(qū),且位于,兩地中點處.

1)求,兩地之間的距離;

2)校車從地勻速行駛1小時40分鐘到達地,若這段路程限速100千米/時,計算校車是否超速?

(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知□ABCD中,AE平分∠BADDCEDFBCF,交AEG,且AD=DF.過點DDC的垂線,分別交AE、AB于點MN.

(1)求證:AM=GE

(2)DG=a、CF=b,AB的長.

(3),DG=,直接寫出CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果商計劃購進甲、乙兩種水果進行銷售,經(jīng)了解,甲種水果的進價比乙種水果的進價每千克少4元,且用800元購進甲種水果的數(shù)量與用1000元購進乙種水果的數(shù)量相同.

1)求甲、乙兩種水果的單價分別是多少元?

2)該水果商根據(jù)該水果店平常的銷售情況確定,購進兩種水果共200千克,其中甲種水果的數(shù)量不超過乙種水果數(shù)量的3倍,且購買資金不超過3420元,購回后,水果商決定甲種水果的銷售價定為每千克20元,乙種水果的銷售價定為每千克25元,則水果商應(yīng)如何進貨,才能獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩個轉(zhuǎn)盤分別被分成了等份與等份,每份內(nèi)均標有數(shù)字.分別旋轉(zhuǎn)這兩個轉(zhuǎn)盤,將轉(zhuǎn)盤停止后指針所指區(qū)域內(nèi)的兩數(shù)相乘.

1)請將所有可能出現(xiàn)的結(jié)果填入下表:

1

2

3

4

1

   

   

   

   

2

   

   

   

   

3

   

   

   

   

2)積為的概率為   ;積為偶數(shù)的概率為   ;

3)從個整數(shù)中,隨機選取個整數(shù),該數(shù)不是(1)中所填數(shù)字的概率為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是垂直于水平面的建筑物.為測量AB的高度,小紅從建筑物底端B點出發(fā),沿水平方向行走了52米到達點C,然后沿斜坡CD前進,到達坡頂D點處,.在點D處放置測角儀,測角儀支架DE高度為0.8米,在E點處測得建筑物頂端A點的仰角(點AB,CD,E在同一平面內(nèi)).斜坡CD的坡度(或坡比),那么建筑物AB的高度約為(

(參考數(shù)據(jù),,

A.65.8B.71.8C.73.8D.119.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“慈善一日捐”活動中,為了解某校學(xué)生的捐款情況,抽樣調(diào)查了該校部分學(xué)生的捐款數(shù)(單位:元),并繪制成下面的統(tǒng)計圖.

1)本次調(diào)查的樣本容量是________,這組數(shù)據(jù)的眾數(shù)為________元;

2)求這組數(shù)據(jù)的平均數(shù);

3)該校共有學(xué)生參與捐款,請你估計該校學(xué)生的捐款總數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.

(1)求證:AB=AF;

(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案